Spelling suggestions: "subject:"discriminant"" "subject:"indiscriminant""
1 |
Topics in polynomial sequences defined by linear recurrencesNDIKUBWAYO, INNOCENT January 2019 (has links)
This licentiate consists of two papers treating polynomial sequences defined by linear recurrences. In paper I, we establish necessary and sufficient conditions for the reality of all the zeros in a polynomial sequence {P_i} generated by a three-term recurrence relation P_i(x)+ Q_1(x)P_{i-1}(x) +Q_2(x) P_{i-2}(x)=0 with the standard initial conditions P_{0}(x)=1, P_{-1}(x)=0, where Q_1(x) and Q_2(x) are arbitrary real polynomials. In paper II, we study the root distribution of a sequence of polynomials {P_n(z)} with the rational generating function \sum_{n=0}^{\infty} P_n(z)t^n= \frac{1}{1+ B(z)t^\ell +A(z)t^k} for (k,\ell)=(3,2) and (4,3) where A(z) and B(z) are arbitrary polynomials in z with complex coefficients. We show that the roots of P_n(z) which satisfy A(z)B(z)\neq 0 lie on a real algebraic curve which we describe explicitly.
|
Page generated in 0.0552 seconds