• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • No language data
  • Tagged with
  • 9
  • 9
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Automatic semigroups : constructions and subsemigroups

Descalco, L. January 2002 (has links)
In this thesis we start by considering conditions under which some standard semigroup constructions preserve automaticity. We first consider Rees matrix semigroups over a semigroup, which we call the base, and work on the following questions: (i) If the base is automatic is the Rees matrix semigroup automatic? (ii) If the Rees matrix semigroup is automatic must the base be automatic as well? We also consider similar questions for Bruck-Reilly extensions of monoids and wreath products of semigroups. Then we consider subsemigroups of free products of semigroups and we study conditions that guarantee them to be automatic. Finally we obtain a description of the subsemigroups of the bicyclic monoid that allow us to study some of their properties, which include finite generation, automaticity and finite presentability.
2

Automatic S-acts and inverse semigroup presentations

Dombi, Erzsebet Rita January 2005 (has links)
To provide a general framework for the theory of automatic groups and semigroups, we introduce the notion of an automatic semigroup act. This notion gives rise to a variety of definitions for automaticity depending on the set chosen as a semigroup act. Namely, we obtain the notions of automaticity, Schutzenberger automaticity, R- and L-class automaticity, etc. We discuss the basic properties of automatic semigroup acts. We show that if S is a semigroup with local right identities, then automaticty of a semigroup act is independent of the choice of both the generators of S and the generators of the semigroup act. We also discuss the equality problem of automatic semigroup acts. To give a geometric approach, we associate a directed labelled graph to each S-act and introduce the notion of the fellow traveller property in the associated graph. We verify that if S is a regular semigroup with finitely many idempotents, then Schutzenberger automaticity is characterized by the fellow traveller property of the Schutzenberger graph. We also verify that a Schutzenberger automatic regular semigroup with finitely many idempotents is finitely presented. We end Chapter 3 by proving that an inverse free product of Schutzenberger automatic inverse semigroups is Schutzenberger automatic. In Chapter 4, we first introduce the notion of finite generation and finite presentability with respect to a semigroup action. With the help of these concepts we give a necessary and sufficient condition for a semidirect product of a semilattice by a group to be finitely generated and finitely presented as an inverse semigroup. We end Chapter 4 by giving a necessary and sufficient condition for the semidirect product of a semilattice by a group to be Schutzenberger automatic. Chapter 5 is devoted to the study of HNN extensions of inverse semigroups from finite generation and finite presentability point of view. Namely, we give necessary and sufficient conditions for finite presentability of Gilbert's and Yamamura's HNN extension of inverse semigroups. The majority of the results contained in Chapter 5 are the result of a joint work with N.D. Gilbert and N. Ruskuc.
3

Generating uncountable transformation semigroups

Péresse, Yann January 2009 (has links)
We consider naturally occurring, uncountable transformation semigroups S and investigate the following three questions. (i) Is every countable subset F of S also a subset of a finitely generated subsemigroup of S? If so, what is the least number n such that for every countable subset F of S there exist n elements of S that generate a subsemigroup of S containing F as a subset. (ii) Given a subset U of S, what is the least cardinality of a subset A of S such that the union of A and U is a generating set for S? (iii) Define a preorder relation ≤ on the subsets of S as follows. For subsets V and W of S write V ≤ W if there exists a countable subset C of S such that V is contained in the semigroup generated by the union of W and C. Given a subset U of S, where does U lie in the preorder ≤ on subsets of S? Semigroups S for which we answer question (i) include: the semigroups of the injec- tive functions and the surjective functions on a countably infinite set; the semigroups of the increasing functions, the Lebesgue measurable functions, and the differentiable functions on the closed unit interval [0, 1]; and the endomorphism semigroup of the random graph. We investigate questions (ii) and (iii) in the case where S is the semigroup Ω[superscript Ω] of all functions on a countably infinite set Ω. Subsets U of Ω[superscript Ω] under consideration are semigroups of Lipschitz functions on Ω with respect to discrete metrics on Ω and semigroups of endomorphisms of binary relations on Ω such as graphs or preorders.
4

Presentations for subsemigroups of groups

Cain, Alan James January 2005 (has links)
This thesis studies subsemigroups of groups from three perspectives: automatic structures, ordinary semigroup presentations, and Malcev presentaions. [A Malcev presentation is a presentation of a special type for a semigroup that can be embedded into a group. A group-embeddable semigroup is Malcev coherent if all of its finitely generated subsemigroups admit finite Malcev presentations.] The theory of synchronous and asynchronous automatic structures for semigroups is expounded, particularly for group-embeddable semigroups. In particular, automatic semigroups embeddable into groups are shown to inherit many of the pleasant geometric properties of automatic groups. It is proved that group- embeddable automatic semigroups admit finite Malcev presentations, and such presentations can be found effectively. An algorithm is exhibited to test whether an automatic semigroup is a free semigroup. Cancellativity of automatic semigroups is proved to be undecidable. Study is made of several classes of groups: virtually free groups; groups that satisfy semigroup laws (in particular [virtually] nilpotent and [virtually] abelian groups); polycyclic groups; free and direct products of certain groups; and one-relator groups. For each of these classes, the question of Malcev coherence is considered, together with the problems of whether finitely generated subsemigroups are finitely presented or automatic. This study yields closure and containment results regarding the class of Malcev coherent groups. The property of having a finite Malcev presentation is shown to be preserved under finite Rees index extensions and subsemigroups. Other concepts of index are also studied.
5

Graph automatic semigroups

Carey, Rachael Marie January 2016 (has links)
In this thesis we examine properties and constructions of graph automatic semigroups, a generalisation of both automatic semigroups and finitely generated FA-presentable semigroups. We consider the properties of graph automatic semigroups, showing that they are independent of the choice of generating set, have decidable word problem, and that if we have a graph automatic structure for a semigroup then we can find one with uniqueness. Semigroup constructions and their effect on graph automaticity are considered. We show that finitely generated direct products, free products, finitely generated Rees matrix semigroup constructions, zero unions, and ordinal sums all preserve unary graph automaticity, and examine when the converse also holds. We also demonstrate situations where semidirect products, Bruck-Reilly extensions, and semilattice constructions preserve graph automaticity, and consider the conditions we may impose on such constructions in order to ensure that graph automaticity is preserved. Unary graph automatic semigroups, that is semigroups which have graph automatic structures over a single letter alphabet, are also examined. We consider the form of an automaton recognising multiplication by generators in such a semigroup, and use this to demonstrate various properties of unary graph automatic semigroups. We show that infinite periodic semigroups are not unary graph automatic, and show that we may always find a uniform set of normal forms for a unary graph automatic semigroup. We also determine some necessary conditions for a semigroup to be unary graph automatic, and use this to provide examples of semigroups which are not unary graph automatic. Finally we consider semigroup constructions for unary graph automatic semigroups. We show that the free product of two semigroups is unary graph automatic if and only if both semigroups are trivial; that direct products do not always preserve unary graph automaticity; and that Bruck-Reilly extensions are never unary graph automatic.
6

Classification and enumeration of finite semigroups

Distler, Andreas January 2010 (has links)
The classification of finite semigroups is difficult even for small orders because of their large number. Most finite semigroups are nilpotent of nilpotency rank 3. Formulae for their number up to isomorphism, and up to isomorphism and anti-isomorphism of any order are the main results in the theoretical part of this thesis. Further studies concern the classification of nilpotent semigroups by rank, leading to a full classification for large ranks. In the computational part, a method to find and enumerate multiplication tables of semigroups and subclasses is presented. The approach combines the advantages of computer algebra and constraint satisfaction, to allow for an efficient and fast search. The problem of avoiding isomorphic and anti-isomorphic semigroups is dealt with by supporting standard methods from constraint satisfaction with structural knowledge about the semigroups under consideration. The approach is adapted to various problems, and realised using the computer algebra system GAP and the constraint solver Minion. New results include the numbers of semigroups of order 9, and of monoids and bands of order 10. Up to isomorphism and anti-isomorphism there are 52,989,400,714,478 semigroups with 9 elements, 52,991,253,973,742 monoids with 10 elements, and 7,033,090 bands with 10 elements. That constraint satisfaction can also be utilised for the analysis of algebraic objects is demonstrated by determining the automorphism groups of all semigroups with 9 elements. A classification of the semigroups of orders 1 to 8 is made available as a data library in form of the GAP package Smallsemi. Beyond the semigroups themselves a large amount of precomputed properties is contained in the library. The package as well as the code used to obtain the enumeration results are available on the attached DVD.
7

On generators, relations and D-simplicity of direct products, Byleen extensions, and other semigroup constructions

Baynes, Samuel January 2015 (has links)
In this thesis we study two different topics, both in the context of semigroup constructions. The first is the investigation of an embedding problem, specifically the problem of whether it is possible to embed any given finitely presentable semigroup into a D-simple finitely presentable semigroup. We consider some well-known semigroup constructions, investigating their properties to determine whether they might prove useful for finding a solution to our problem. We carry out a more detailed study into a more complicated semigroup construction, the Byleen extension, which has been used to solve several other embedding problems. We prove several results regarding the structure of this extension, finding necessary and sufficient conditions for an extension to be D-simple and a very strong necessary condition for an extension to be finitely presentable. The second topic covered in this thesis is relative rank, specifically the sequence obtained by taking the rank of incremental direct powers of a given semigroup modulo the diagonal subsemigroup. We investigate the relative rank sequences of infinite Cartesian products of groups and of semigroups. We characterise all semigroups for which the relative rank sequence of an infinite Cartesian product is finite, and show that if the sequence is finite then it is bounded above by a logarithmic function. We will find sufficient conditions for the relative rank sequence of an infinite Cartesian product to be logarithmic, and sufficient conditions for it to be constant. Chapter 4 ends with the introduction of a new topic, relative presentability, which follows naturally from the topic of relative rank.
8

Endomorphisms of Fraïssé limits and automorphism groups of algebraically closed relational structures

McPhee, Jillian Dawn January 2012 (has links)
Let Ω be the Fraïssé limit of a class of relational structures. We seek to answer the following semigroup theoretic question about Ω. What are the group H-classes, i.e. the maximal subgroups, of End(Ω)? Fraïssé limits for which we answer this question include the random graph R, the random directed graph D, the random tournament T, the random bipartite graph B, Henson's graphs G[subscript n] (for n greater or equal to 3) and the total order Q. The maximal subgroups of End(Ω) are closely connected to the automorphism groups of the relational structures induced by the images of idempotents from End(Ω). It has been shown that the relational structure induced by the image of an idempotent from End(Ω) is algebraically closed. Accordingly, we investigate which groups can be realised as the automorphism group of an algebraically closed relational structure in order to determine the maximal subgroups of End(Ω) in each case. In particular, we show that if Γ is a countable graph and Ω = R,D,B, then there exist 2[superscript aleph-naught] maximal subgroups of End(Ω) which are isomorphic to Aut(Γ). Additionally, we provide a complete description of the subsets of Q which are the image of an idempotent from End(Q). We call these subsets retracts of Q and show that if Ω is a total order and f is an embedding of Ω into Q such that im f is a retract of Q, then there exist 2[superscript aleph-naught] maximal subgroups of End(Q) isomorphic to Aut(Ω). We also show that any countable maximal subgroup of End(Q) must be isomorphic to Zⁿ for some natural number n. As a consequence of the methods developed, we are also able to show that when Ω = R,D,B,Q there exist 2[superscript aleph-naught] regular D-classes of End(Ω) and when Ω = R,D,B there exist 2[superscript aleph-naught] J-classes of End(Ω). Additionally we show that if Ω = R,D then all regular D-classes contain 2[superscript aleph-naught] group H-classes. On the other hand, we show that when Ω = B,Q there exist regular D-classes which contain countably many group H-classes.
9

Computational techniques in finite semigroup theory

Wilson, Wilf A. January 2019 (has links)
A semigroup is simply a set with an associative binary operation; computational semigroup theory is the branch of mathematics concerned with developing techniques for computing with semigroups, as well as investigating semigroups with the help of computers. This thesis explores both sides of computational semigroup theory, across several topics, especially in the finite case. The central focus of this thesis is computing and describing maximal subsemigroups of finite semigroups. A maximal subsemigroup of a semigroup is a proper subsemigroup that is contained in no other proper subsemigroup. We present novel and useful algorithms for computing the maximal subsemigroups of an arbitrary finite semigroup, building on the paper of Graham, Graham, and Rhodes from 1968. In certain cases, the algorithms reduce to computing maximal subgroups of finite groups, and analysing graphs that capture information about the regular I-classes of a semigroup. We use the framework underpinning these algorithms to describe the maximal subsemigroups of many families of finite transformation and diagram monoids. This reproduces and greatly extends a large amount of existing work in the literature, and allows us to easily see the common features between these maximal subsemigroups. This thesis is also concerned with direct products of semigroups, and with a special class of semigroups known as Rees 0-matrix semigroups. We extend known results concerning the generating sets of direct products of semigroups; in doing so, we propose techniques for computing relatively small generating sets for certain kinds of direct products. Additionally, we characterise several features of Rees 0-matrix semigroups in terms of their underlying semigroups and matrices, such as their Green's relations and generating sets, and whether they are inverse. In doing so, we suggest new methods for computing Rees 0-matrix semigroups.

Page generated in 0.0407 seconds