• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • Tagged with
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Topics in quantum Nanostructure Physics: Spin-Orbit effects and Far-Infrared Response

Malet Giralt, Francesc 13 May 2008 (has links)
We have investigated several properties of semiconductor electronic nanostructures. In the first part of the thesis, within the density functional theory we have addressed the ground state and the dipolar response of quantum rings. In particular, we have considered single-quantum-ring systems and also vertically and concentrically coupled quantum rings. As parameters, we have taken both the inter-ring distance and the intensity of externally applied electric and/or magnetic fields. The calculation of the addition energies and the dipolar response has allowed us to study the evolution of these properties as a function of the mentioned parameters, and to describe as well some of the properties of double-ring systems in terms of those of the single rings, especially in the limits of small (strong coupling regime) and large (weak coupling regime) ring separations.Also, we have studied the effects of the Rashba and Dresselhaus spin-orbit interactions in quantum wells and wires submitted to magnetic fields. For the formers, we have not taken into account the electron-electron interaction in most of the calculations and we have employed an analytic formalism that has allowed us to obtain exact results for the electronic eigenstates and eigenenergies in some particular cases, as well as non-exact expressions obtained after doing some approximations that have turned out to be very accurate when compared with the numerically obtained results. For the quantum wires, we have employed a generalization of the local spindensity approximation that allows to treat systems with non-collinear spins (e.g. due to the spinorbit interaction) similarly as those systems in which one can define a common spin quantization axis. This way we have been able to compute the single-particle orbitals and also the conductance of the wire as a funcion of both the magnetic field and the spin-orbit coupling strengths, investigating the effects of the exchange-correlation interaction.KEY WORDS: Nanostructures, Quantum Rings, Quantum Wires, Spin-Orbit, Far-Infrared Response / Hem investigat diverses propietats de les nanoestructures electròniques de semiconductor. En primer lloc, utilitzant el formalisme de la teoria del funcional de la densitat hem estudiat l'estat fonamental i la resposta a l'infraroig llunyà d'anells quàntics. En particular, hem considerat els sistemes formats per un sol anell, i també per anells dobles acoblats verticalment i concèntricament.Com a paràmetres hem pres les distàncies de separació entre els anells, i també la intensitat d'un cert camp elèctric i/o magnètic aplicat sobre els sistemes. El càlcul de les energies d'addició i de la resposta dipolar ens ha permès observar la seva evolució en funció d'aquests paràmetres, i també descriure algunes de les propietats dels anells dobles en termes de les dels anells simples, especialment en els límits de separacions molt petites (límit d'acoblament quàntic fort) i molt grans (límit d'acoblament quàntic dèbil).Per altra banda, hem estudiat els efectes de les interaccions d'spin-òrbita de Rashba i de Dresselhaus en pous i fils quàntics sotmesos a camps magnètics. En el cas dels primers, s'ha omès en gairebé tots els càlculs la interacció electró-electró i s'ha emprat un formalisme anal.lític que ens ha permès obtenir resultats exactes pels autoestats i les autoenergies dels electrons en alguns casos particulars, i d'altres expressions no exactes obtingudes després de realitzar certes aproximacions, però que han resultat ser molt acurades en comparar-les amb els resultats numèrics. En el cas dels fils quàntics hem utilitzat una generalització de l'aproximació local d'spin que ens ha permès estudiar un sistema on els spins no són colineals degut a la presència de la interacció d'spin-òrbita de manera similar als sistemes en que sí ho són. Així hem calculat les energies monoparticulars i la conductància del fil en funció del camp magnètic i de la intensitat dels acoblaments de Rashba i de Dresselhaus, investigant els efectes de la interacció d'intercanvi-correlació.
2

Effects of the dipole-dipole interaction on the physics of ultracold quantum gases

Abad García, Marta 16 February 2012 (has links)
In this thesis we study the effects of the dipole-dipole interaction on the physics of ultracold quantum gases, both bosonic and fermionic, within the theoretical framework provided by the mean-field regime. This kind of interaction takes place in ultracold atomic gases (for instance 52Cr or 164Dy) due to their atomic magnetic dipole moment, and in ultracold molecular gases due to the magnetic or electric dipole moment. In the case of quantum gases of bosonic atoms, or Bose-Einstein condensates, the dipole-dipole interaction can be studied within mean-field approximation using the Gross-Pitaevskii equation, which now contains a new non-linear term due to the dipole-dipole interaction. We investigate, on the one hand dipolar condensates confined in harmonic traps, and on the other dipolar condensates confined in toroidal traps. In the harmonic geometry, our focus is on the study of the ground state and the quantized vortex state, where the density profile is characterized as well as some properties leading to the process of vortex formation, such as the critical frequency and the energy barrier that has to be overcome to bring the vortex from the surface to the centre of the gas. We finish the study of dipolar condensates in harmonic traps by dynamically simulating the precession frequency of an off-center vortex in a non-rotating condensate. In the toroidal geometry the dipolar effects are strongly magnified when the polarization axis of the dipoles is perpendicular to the trap symmetry axis. In this case, the anisotropic structure of the density can be understood as the response of the system to the double-well effective potential along the ring. We have studied the dynamics of this system when the initial number of atoms in the left and right wells is imbalanced, predicting Josephson and self-trapping oscillations depending on the initial condition. This has led us to name this new system as Self-induced Josephson Junction. We have studied in detail the self-trapping regime and we have seen that the particle flux inversion is closely related to the crossing of vortices across the Josephson junctions. This result opens the door to establishing a more direct connection between the phase-slip regime, widely addressed in superfluid helium, and the self-trapping regime of condensates. In the case of quantum gases of fermionic dipolar particles, we have studied how the radial quadrupole mode allows one to distinguish between hydrodynamic and collisionless regimes. We have analytically calculated the frequency of this mode in the mean-field approximation, generalizing the results from the Thomas-Fermi approximation for trapped ideal Fermi gases. On the one hand, we observe that the frequency in the hydrodynamic regime is smaller than in non-dipolar Fermi gases, while in the collisionless regime the frequency is larger or smaller than that corresponding to the non-interacting system depending on the geometry of the harmonic trap. On the other hand, we predict that reducing the trap deformation (aspect ratio) an observable jump in the frequency of the radial quadrupole mode would take place, which would correspond to the transition between the collisionless and hydrodynamic regimes, for instance when the gas undergoes the transition to the superfluid state. / En aquesta tesi s’estudien els efectes de la interacció dipol-dipol en la física dels gasos qu`antics ultrafreds, tant de caràcter bosònic com fermiònic, i dins del marc teòric del règim de camp mig. En el primer cas considerem condensats de Bose-Einstein dipolars confinats tant en trampes harmòniques com toroidals, descrivint-ne la geometria de l’estat fonamental i de l’estat de vòrtex quantitzat.En la geometria toroidal els efectes dipolars es veuen fortament magnificats quan l’eix de polarització dels dipols és perpendicular a l’eix de simetria de la trampa. Aquesta configuració ens permet introduïr el concepte de Junció de Josephson Autoinduïda (Self-induced Josephson Junction), en la qual hem predit oscil•lacions de Josephson i d’autoatrapament (self-trapping) depenent de la condició inicial. Estudiant en detall el règim d’autoatrapament hem vist que la inversió del flux de partícules està fortament lligada al creuament de vòrtexs quantitzats a travès de les unions de Josephson. Aquest resultat obre les portes a establir una relació més directa entre el règim dinàmic de salts de fase (phaseslips), àmpliament estudiat en heli superfluid, i el règim d’autoatrapament propi dels condensats. Finalment, en el cas de gasos quàntics de partícules dipolars fermiòniques, hem estudiat com les excitacions col•lectives, en concret el mode quadrupolar radial, permeten distingir entre els règims hidrodinàmic (que pot ser tant degut a la rapidesa de les interaccions com a la superfluidesa) i nocol•lisional (que té lloc quan les interaccions són a tan baixa freqüència que efectivament es poden negligir).
3

Structure and dynamics of liquid helium systems and their interaction with atomic dopants and free electrons

Mateo Valderrama, David 02 May 2013 (has links)
This thesis presents a collection of four papers published in peer-reviewed scientific journals plus a manuscript yet to be submitted, all of them in the field of low temperature physics and quantum fluids. Each of these works reports a step forward in the ever-developing theoretical description of helium systems by means of density functional theory. The first two papers deal with questions related to the groundstate description of helium complexes around atomic impurities. We have computed such structure and determined its effect on the dipole absorption spectrum of Na in (3)He—(4)He clusters and of Mg in the homogeneous, isotopically mixed liquid. We have also explored the limits of density functional calculations for a small number of helium atoms interacting with a linear carbonyl sulfide (OCS) molecule. To this end we have implemented a Kohn-Sham scheme for 3He and computed the structure of OCS@3HeN clusters for N up to 40. The next three papers deal with the real-time description of dynamical processes in helium systems of experimental interest. We present an efficient and quantitatively accurate procedure to compute dynamical processes, namely the dynamics of an excited electron bubble and of an excited silver impurity, following a time-dependent density functional theory (TDDFT) for helium coupled to the appropiate dynamics of impurities. In the case of the electron bubble, we have related the experimental disappearance of 1P bubbles at high pressures with the existence of a nonradiative de-excitation path involving the bubble splitting about 20 picoseconds after the excitation. In the case of the desorption of a silver atom from a He drop, our dynamical calculations predict a range of velocities for the ejected impurity consistent with the experimental velocity distribution, which can be taken as indirect evidence of the superfluidity of helium nanodroplets. / En esta tesis se presenta una colección de cuatro artículos publicados y un manuscrito aún no publicado, todos ellos en el campo de la física de bajas temperaturas y fluidos cuánticos. Cada uno de ellos reporta un paso adelante en la descripción teórica de los sistemas de helio por medio de la teoría del funcional de la densidad. Los primeros dos artículos están clasificados como “estructura" ya que tratan cuestiones relacionadas con la descripción del estado fundamental de complejos de helio dopados con impurezas atómicas. En ellos hemos calculado la estructura y determinado su efecto sobre el espectro de absorción dipolar del Na en agregados de (3)He-(4)He y del Mg en el líquido homogéneo e isotópicamente mezclado. Para el caso de Na en gotas se ha encontrado que, a pesar de necesitar una gran cantidad de (3)He para que la capa exterior de la gota sature, el espectro de la impureza es muy insensible a la composición isotópica y rápidamente satura al valor que toma en las gotas de (3)He puras. Para Mg en el líquido mezclado, la presencia de (3)He induce cambios en el espectro mucho más pequeños que su anchura característica, por lo que se ha encontrado que el efecto general de la composición isotópica de la mezcla en la espectroscopia es mínima. Hemos explorado también los límites del funcional de la densidad para un número pequeño de átomos de helio interactuando con una molécula lineal de sulfuro de carbonilo (OCS). Para ello hemos implementado un esquema de Kohn-Sham para el (3)He y hemos obtenido la estructura de agregados OCS@(3)He(N) para un número de átomos “N” hasta 40. Hemos comparado los resultados de los agregados de (4)He con el mismo número de átomos y hemos encontrado que la alta anisotrop_á de la molécula de OCS magni_ca los efectos de las diferentes estadísticas de cada isótopo. Nuestra estimación de los momentos de inercia de estos agregados es consistente con la interpretación de los datos experimentales que sugieren una estructura de 11 átomos de helio rotando solidariamente con la molécula de OCS. Los siguientes tres trabajos, clasificados como “dinámica", describen la evolución temporal de ciertos procesos de interés experimental en los sistemas de helio. Mientras que las publicaciones sobre la estructura completan una línea de trabajo bien establecida, las de esta sección abren un nuevo frente de exploración teórica sobre los procesos dinámicos con resolución de picosegundos. En ellos se presenta un procedimiento eficiente para describirlos cuantitativamente mediante una teoría del funcional de la densidad dependiente del tiempo (TDDFT, por sus siglas en inglés) para el helio, acoplado a la dinámica adecuada para la impureza. Cuál es la dinámica “adecuada" depende de las propiedades de la impureza: para la burbuja electrónica 1P se puede utilizar una descripción puramente mecanocuántica del electrón en una aproximación adiabática, mientras que para la burbuja 2P la aproximación adiabática no es aplicable y se deben acoplar las evoluciones en tiempo real del helio y del electrón. Para una impureza masiva como la Ag una descripción clásica de su movimiento es suficiente, pero el efecto de spin-órbita es lo suficientemente importante como para que el estado electrónico del átomo deba tenerse en cuenta en la dinámica como un grado de libertad cuantizado . En el caso de las burbujas electrónicas, hemos relacionado la desaparición de las burbujas 1P a altas presiones con la existencia de un camino de relajación no-radiativo que causa la rotura de la burbuja en dos mitades casi esféricas tras haber transcurrido unos 20 picosegundos desde su excitación. Hemos sido capaces de establecer esta relación gracias a que nuestro cálculo predice la “fisión" de la burbuja solo para presiones superiores a 1 bar, que es el mismo umbral observado experimentalmente para la desaparición de las burbujas 1P. Teniendo en cuenta que aumentar la presión en 1 bar aumenta la densidad de saturación del líquido en poco más de un 1 %, la exactitud de este resultado indica que TDDFT contiene la física relevante para describir este tipo de procesos y tiene capacidad de predicción cuantitativa. También hemos encontrado un marcado cambio en el comportamiento del espectro de absorción con resolución temporal de la burbuja 1P dependiendo de si ésta fisiona o no, es decir, dependiendo de la presión del líquido. La observación experimental de este cambio y su determinación podrá completar la información obtenida en los experimentos de cavitación y fotoconductividad. En el caso de la desorción de un átomo de plata tras su fotoexcitación en el interior de una gota de He, nuestros cálculos dinámicos predicen un rango de velocidades para la impureza consistente con la distribución de velocidades experimental. Esta velocidad es el resultado de cuánta energía transfiere la impureza a la gota, lo cual depende de los modos de excitación disponibles para dicha transferencia. Nuestra descripción del líquido solo permite excitaciones colectivas tales como ondas de densidad u oscilaciones de superficie, por lo que la compatibilidad de nuestros resultados con los datos experimentales se puede tomar como una evidencia indirecta de la superfluidez de las nanogotas de helio. Adicionalmente hemos descartado la nucleación vórtices como un posible canal de transferencia de energía en gotas nanoscópicas al no haberlos generado en nuestros cálculos.

Page generated in 0.0526 seconds