1 |
Calibration and Hedging in FinanceLindholm, Love January 2014 (has links)
This thesis treats aspects of two fundamental problems in applied financial mathematics: calibration of a given stochastic process to observed marketprices on financial instruments (which is the topic of the first paper) and strategies for hedging options in financial markets that are possibly incomplete (which is the topic of the second paper). Calibration in finance means choosing the parameters in a stochastic process so as to make the prices on financial instruments generated by the process replicate observed market prices. We deal with the so called local volatility model which is one of the most widely used models in option pricing across all asset classes. The calibration of a local volatility surface to option marketprices is an ill-posed inverse problem as a result of the relatively small number of observable market prices and the unsmooth nature of these prices in strike and maturity. We adopt the practice advanced by some authors to formulate this inverse problem as a least squares optimization under the constraint that option prices follow Dupire’s partial differential equation. We develop two algorithms for performing the optimization: one based on techniques from optimal control theory and another in which a numerical quasi-Newton algorithmis directly applied to the objective function. Regularization of the problem enters easily in both problem formulations. The methods are tested on three months of daily option market quotes on two major equity indices.The resulting local volatility surfaces from both methods yield excellent replications of the observed market prices. Hedging is the practice of offsetting the risk in a financial instrument by taking positions in one or several other tradable assets. Quadratic hedging is a well developed theory for hedging contingent claims in incomplete markets by minimizing the replication error in a suitable L2-norm. This theory, though, is not widely used among market practitioners and relatively few scientific papers evaluate how well quadratic hedging works on real marketdata. We construct a framework for comparing hedging strategies, and use it to empirically test the performance of quadratic hedging of European call options on the Euro Stoxx 50 index modeled with an affine stochastic volatility model with and without jumps. As comparison, we use hedging in the standard Black-Scholes model. We show that quadratic hedging strategies significantly outperform hedging in the Black-Scholes model for out of the money options and options near the money of short maturity when only spot is used in the hedge. When in addition another option is used for hedging, quadratic hedging outperforms Black-Scholes hedging also for medium dated options near the money. / Den här avhandlingen behandlar aspekter av två fundamentala problem i tillämpad finansiell matematik: kalibrering av en given stokastisk process till observerade marknadspriser på finansiella instrument (vilket är ämnet för den första artikeln) och strategier för hedging av optioner i finansiella marknader som är inkompletta (vilket är ämnet för den andra artikeln). Kalibrering i finans innebär att välja parametrarna i en stokastisk process så att de priser på finansiella instrument som processen genererar replikerar observerade marknadspriser. Vi behandlar den så kallade lokala volatilitets modellen som är en av de mest utbrett använda modellerna inom options prissättning för alla tillgångsklasser. Kalibrering av en lokal volatilitetsyta till marknadspriser på optioner är ett illa ställt inverst problem som en följd av att antalet observerbara marknadspriser är relativt litet och att priserna inte är släta i lösenpris och löptid. Liksom i vissa tidigare publikationer formulerar vi detta inversa problem som en minsta kvadratoptimering under bivillkoret att optionspriser följer Dupires partiella differentialekvation. Vi utvecklar två algoritmer för att utföra optimeringen: en baserad på tekniker från optimal kontrollteori och en annan där en numerisk kvasi-Newton metod direkt appliceras på målfunktionen. Regularisering av problemet kan enkelt införlivas i båda problemformuleringarna. Metoderna testas på tre månaders data med marknadspriser på optioner på två stora aktieindex. De resulterade lokala volatilitetsytorna från båda metoderna ger priser som överensstämmer mycket väl med observerade marknadspriser. Hedging inom finans innebär att uppväga risken i ett finansiellt instrument genom att ta positioner i en eller flera andra handlade tillgångar. Kvadratisk hedging är en väl utvecklad teori för hedging av betingade kontrakt i inkompletta marknader genom att minimera replikeringsfelet i en passande L2-norm. Denna teori används emellertid inte i någon högre utsträckning av marknadsaktörer och relativt få vetenskapliga artiklar utvärderar hur väl kvadratisk hedging fungerar på verklig marknadsdata. Vi utvecklar ett ramverk för att jämföra hedgingstrategier och använder det för att empiriskt pröva hur väl kvadratisk hedging fungerar för europeiska köpoptioner på aktieindexet Euro Stoxx 50 när det modelleras med en affin stokastisk volatilitetsmodell med och utan hopp. Som jämförelse använder vi hedging i Black-Scholes modell.Vi visar att kvadratiska hedgingstrategier är signifikant bättre än hedging i Black-Scholes modell för optioner utanför pengarna och optioner nära pengarna med kort löptid när endast spot används i hedgen. När en annan option används i hedgen utöver spot är kvadratiska hedgingstrategier bättre än hedging i Black-Scholes modell även för optioner nära pengarna medmedellång löptid. / <p>QC 20141121</p>
|
2 |
Quantification of the model risk in finance and related problems / Quantification du risque de modèle en finance et problèmes reliésLaachir, Ismail 02 July 2015 (has links)
L’objectif central de la thèse est d’étudier diverses mesures du risque de modèle, exprimées en terme monétaire, qui puissent être appliquées de façon cohérente à une collection hétérogène de produits financiers. Les deux premiers chapitres traitent cette problématique, premièrement d’un point de vue théorique, ensuite en menant un étude empirique centrée sur le marché du gaz naturel. Le troisième chapitre se concentre sur une étude théorique du risque dit de base (en anglais basis risk). Dans le premier chapitre, nous nous sommes intéressés à l’évaluation de produits financiers complexes, qui prend en compte le risque de modèle et la disponibilité dans le marché de produits dérivés basiques, appelés aussi vanille. Nous avons en particulier poursuivi l’approche du transport optimal (connue dans la littérature) pour le calcul des bornes de prix et des stratégies de sur (sous)-couverture robustes au risque de modèle. Nous reprenons en particulier une construction de probabilités martingales sous lesquelles le prix d’une option exotique atteint les dites bornes de prix, en se concentrant sur le cas des martingales positives. Nous mettons aussi en évidence des propriétés significatives de symétrie dans l’étude de ce problème. Dans le deuxième chapitre, nous approchons le problème du risque de modèle d’un point de vue empirique, en étudiant la gestion optimale d’une unité de gaz naturel et en quantifiant l’effet de ce risque sur sa valeur optimale. Lors de cette étude, l’évaluation de l’unité de stockage est basée sur le prix spot, alors que sa couverture est réalisée avec des contrats à termes. Comme mentionné auparavant, le troisième chapitre met l’accent sur le risque de base, qui intervient lorsque l’on veut couvrir un actif conditionnel basé sur un actif non traité (par exemple la température) en se servant d’un portefeuille constitué d’actifs traités sur le marché. Un critère de couverture dans ce contexte est celui de la minimisation de la variance qui est étroitement lié à la décomposition dite de Föllmer-Schweizer. Cette décomposition peut être déduite de la résolution d’une certaine équation différentielle stochastique rétrograde (EDSR) dirigée par une martingale éventuellement à sauts. Lorsque cette martingale est un mouvement brownien standard, les EDSR sont fortement associées aux EDP paraboliques semi linéaires. Dans le cas général nous formulons un problème déterministe qui étend les EDPs mentionnées. Nous appliquons cette démarche à l’important cas particulier de la décomposition de Föllmer-Schweizer, dont nous donnons des expressions explicites de la décomposition du payoff d’une option lorsque les sous-jacents sont exponentielles de processus additifs. / The main objective of this thesis is the study of the model risk and its quantification through monetary measures. On the other hand we expect it to fit a large set of complex (exotic) financial products. The first two chapters treat the model risk problem both from the empirical and the theoretical point of view, while the third chapter concentrates on a theoretical study of another financial risk called basis risk. In the first chapter of this thesis, we are interested in the model-independent pricing and hedging of complex financial products, when a set of standard (vanilla) products are available in the market. We follow the optimal transport approach for the computation of the option bounds and the super (sub)-hedging strategies. We characterize the optimal martingale probability measures, under which the exotic option price attains the model-free bounds; we devote special interest to the case when the martingales are positive. We stress in particular on the symmetry relations that arise when studying the option bounds. In the second chapter, we approach the model risk problem from an empirical point of view. We study the optimal management of a natural gas storage and we quantify the impact of that risk on the gas storage value. As already mentioned, the last chapter concentrates on the basis risk, which is the risk that arises when one hedges a contingent claim written on a non-tradable but observable asset (e.g. the temperature) using a portfolio of correlated tradable assets. One hedging criterion is the mean-variance minimization, which is closely related to the celebrated Föllmer-Schweizer decomposition. That decomposition can be deduced from the resolution of a special Backward Stochastic Differential Equations (BSDEs) driven by a càdlàg martingale. When this martingale is a standard Brownian motion, the related BSDEs are strongly related to semi-linear parabolic PDEs. In that chapter, we formulate a deterministic problem generalizing those PDEs to the general context of martingales and we apply this methodology to discuss some properties of the Föllmer-Schweizer decomposition. We also give an explicit expression of such decomposition of the option payoff when the underlying prices are exponential of additives processes.
|
Page generated in 0.0559 seconds