• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 72
  • 16
  • 11
  • 6
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 148
  • 114
  • 63
  • 23
  • 23
  • 22
  • 20
  • 17
  • 16
  • 16
  • 15
  • 14
  • 14
  • 13
  • 12
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Telomere Quadruplexe in wässriger Lösung molekulardynamische Simulationen zum Einfluss von Kationen auf Struktur und Dynamik /

Kronshage, Peter. January 2004 (has links) (PDF)
Bielefeld, Universiẗat, Diss., 2004.
2

Studies on G-quadruplex nucleic acid structures in human cells

Biffi, Giulia January 2014 (has links)
No description available.
3

Development Of Oligonucleotide And Host-guest Based Supramolecular Sensors For Biological Applications

January 2016 (has links)
The work in this dissertation has two main focuses: (1) to develop sensors based on a quadruplex-forming oligonucleotide scaffold for the sensing of specific sequences, (2) to develop an indicator displacement assay for the high-throughput determination of host-guest binding capable of easy discrimination between strong and weak-binding species. Chapter 1 serves to provide a brief introduction to some shared background for both projects, through introducing basic tenants of aqueous supramolecular chemistry and nucleic acid chemistry, in addition to some general lessons in system design that can be learned from the study of biology. Chapter 2 describes the design of a sensor based on a naphthalene mono-imide (NMI) scaffold, which due to an intramolecular charge-transfer from the naphthalene to a conjugated bipyridine has a low native fluorescence emission. When exposed to curcubit[7]uril (CB[7]) a macromolecular host able to encapsulate the bipyridine unit, the intramolecular charge-transfer is interrupted, resulting in a significant increase in fluorescence quantum yield (by over an order of magnitude). This enhancement is reversible, with competing binders for CB[7] causing a return to the unbound state with quenched emission. Importantly, this sensor exhibits robust activity with no significant variance in properties throughout the range of 5-10 pH, and is amenable to secondary functionalization for surface attachment without loss of activity. A facile microplate assay was developed on the surface-bound sensor, and a proof of concept study was shown by testing for binding against a library of therapeutically relevant drug classes, resulting in the discovery of three novel guests for CB[7] possessing strong to moderate binding affinities. Chapter 3 discusses the development of an oligonucleotide sensor called a quadruplex molecular beacon (QMB) that is able to transition between a closed, intramolecular quadruplex state and an open, intermolecular duplex state on the sequential application of two stimuli in the form of specific oligonucleotide sequences. The chapter initially focuses on optimizing strand exchange mechanisms that allow for the sequential stimuli to open (and close) the system, finding that the combined use of a short toehold sequence with a targeted base-pair mismatch leads to efficient hybridization and displacement with sequential stimuli. The remaining part of the chapter examines the use of this strand exchange mechanism to drive a fully constituted QMB through sequential opening and closing in response to sequential stimuli, with a corresponding fluorescence signal. / Cooper Battle
4

The Outer Limits: Telomere Maintenance by TRF2 and G-Quadruplex DNA Structures

Pedroso, Ilene Marie 03 January 2008 (has links)
Human telomeric DNA consists of tandem repeats of the sequence 5'-d(TTAGGG)-3' assembled into a nucleoprotein complex that functions to protect the ends of chromosomes. Such guanine-rich DNA is capable of forming a variety of G-quadruplexes, which in turn, can have varying functional consequences on telomere maintenance. G-quadruplex stabilizing ligands have been shown to induce chromosome end-to-end fusions, senescence and apoptosis, effects similar to the expression of a dominant-negative TTAGGG Repeat Factor 2 (TRF2). With this in mind, we analyzed the effect of sequence and length of human telomeric DNA, as well as cation conditions on G-quadruplex formation by native polyacrylamide gel electrophoresis and circular dichroism. We show that K+ and Sr2+ can induce human telomeric DNA to form both inter- and intramolecular structures. Circular dichroism results suggest that the structures in K+ were a mix of parallel and antiparallel G-quadruplexes, while Sr2+ induced only parallel-stranded structures. We also found that TRF2, a protein essential for telomere maintenance, affects G-quadruplex structure. These structures serve as useful models to study the effects of G-quadruplexes on the activities of telomeric proteins, like TRF2, from human cells. The G-strand overhang at the ends of telomeres may periodically adopt at least some of these quadruplex conformations, which could subsequently affect protein binding and telomere function. TRF2, a protein essential for telomere maintenance, is not known to bind single-strand (ss) DNA, work performed in the lab suggested that the type of 3'-overhang in telomeric DNA ss/ds-junctions affects TRF2-binding. Specifically, preventing G-quadruplex formation by changing the overhang sequence from 5'-d(TTAGGG)4-3', to 5'-dTTAGGG(TTAGAG)2TTAGGG-3', reduced TRF2 recruitment to the ss/ds-junction from HeLa cell extracts. Using the same techniques as above, we show that the N-terminal basic domain of TRF2 in K+ induces a switch from the mixed parallel/antiparallel-stranded G-quadruplexes usually stabilized by K+-alone, to parallel-stranded G-quadruplexes. Interestingly, it also promotes intermolecular parallel G-quadruplex formation on non-quadruplex, single-stranded intermediates, but will not induce a switch from an antiparallel to a parallel G-quadruplex in Na+. These results are the first to demonstrate specific TRF2 G-quadruplex interactions, suggesting a novel mechanism for TRF2 recognition of the ds/ss junction of telomeres.
5

DNA self-assembly and host-guest chemistry for programmed photonic nanostructures and switches

January 2020 (has links)
archives@tulane.edu / 1 / Pravin Pathak
6

Biochemical and Biophysical Study of the Polymorphic G-Quadruplexes Formed by the Insulin Linked Polymorphic Region

Schonhoft, Joseph 20 July 2009 (has links)
No description available.
7

Conception d’outils chimiques pour la détection des structures d’ADN G-quadruplex / Trapping G-quadruplex DNA from molecular tools to cellular assays

Morel, Elodie 18 December 2015 (has links)
Des structures secondaires d’acides nucléiques atypiques, les structures G-quadruplex, peuvent se former autour d’un cation (K+ ou Na+) dans les régions riches en guanines, grâce à une association de type Hoogsteen. La formation de ces structures est impliquée dans de nombreux mécanismes biologiques, comme la réplication, la transcription ou l’épissage. Elles peuvent affecter l’architecture de l’ADN jusqu’au niveau de la chromatine et provoquer une instabilité importante, tant génétique qu’épigénétique. De nombreuses méthodes ont été développées afin de détecter ces structures in vivo et de comprendre leurs implications au niveau cellulaire. Cependant, le panel d’outils moléculaires disponible actuellement ne permet pas une exploration du génome complète et sélective. Nous avons souhaité développer des outils, capables de sonder efficacement un milieu biologique complexe à la recherche de structures G-quadruplex et d’évaluer le potentiel d’une stratégie thérapeutique anti-tumorale ciblant ces structures. Nous avons mis au point un panel de composés combinant des ligands d’ADN G-quadruplex (PDC, PhenDC3 et Métal-ttpy) avec une biotine et un groupement photoactivable, permettant la capture et l’extraction de structures G-quadruplex de milieux biologiques complexes. Les ligands ont été évalués grâce aux techniques de FID et de FRET-melting, et sélectionnés pour leur affinité mais aussi pour leur affinité pour l’ADN G-quadruplex, assurant un ciblage efficace. Il a également été possible de piéger directement une séquence G-quadruplex en utilisant un complexe de platine, formant un adduit métallique avec les bases de l’ADN. Grâce ce type de ligand d’ADN G-quadruplex, la liaison de coordination métallique joue le rôle de marqueur covalent. Nous avons déterminé sur gel d’électrophorèse la localisation des adduits formés par des complexes dérivés du tolylterpyridine-platine (Pt-ttpy) et étudié la cinétique de platination de l’ADN G-quadruplex. La fonctionnalisation du complexe Pt-ttpy par des groupements photoactivables a permis de réaliser un double-ancrage covalent dans une structure d’ADN G-quadruplex. Par ailleurs, la fonctionnalisation avec un fluorophore a conduit aux premières évaluations en milieu cellulaire.Enfin, notre panel de composés a été testé dans des conditions de capture supportée d’ADN G-quadruplex. Une mise au point de la technique de capture a été réalisée en utilisant des billes magnétiques recouvertes de streptavidine. Les expériences de capture sur billes ont montré que l’efficacité de nos outils varie en fonction de la topologie de la structure G-quadruplex ciblée et du ligand utilisé. Par ailleurs, le groupement photoactivable introduit sur certains de ces outils n’a pas permis d’améliorer la capture d’ADN G-quadruplex. Cependant, il a été possible d’utiliser ces outils en présence d’ADN génomique pour capturer efficacement de fragments d’ADN télomérique, par effet G-quadruplex. / Nucleic acids secondary structures may form in guanine-rich regions by Hoogsteen base-pairing around a cation (K+ or Na+) and stacking of guanine quartets. Those nucleic acid secondary structures called G-quadruplex are believed to play regulatory roles in the main functions related to DNA processing. However, although numerous sequences, potentially forming G4-structures are present in genomes, evidence concerning their in vivo formation and biological role remains limited. Primary aim of our research is to provide new chemical biology tools for evaluating the biological impacts of quadruplexes and the potential of our compounds for quadruplex-targeted anticancer therapy. We have synthetized a set of compounds equipped with biotin and cross linking moieties in order to trap and pull-down G4-structures in various cellular contexts. The G4-ligands (PDC, PhenDC3 and Metal-ttpy) were evaluated thanks to FID and FRET-melting assays, and carefully chosen to efficiently target G-quadruplexes but also to display enough selectivity for cellular assays. Direct trapping of a G-quadruplex structures can also be done by metal complexes, thanks to coordination with DNA bases. Platinum tolylterpyridine derivatives have been studied on gel electrophoresis to map the platination sites and to evaluate the kinetics of the phenomenon. By adding photo crosslinking moieties to Pt-ttpy, efficient double-anchoring has been done on DNA G-quadruplex structure. Moreover, first cellular imaging evaluations were done by adding a fluorophore to this platinum tolylterpyridine complex. To eventually probe quadruplex DNA at the genome-wide scale, full control of the trapping protocol is indeed a key step. Full development of the pull-down step has been done, using streptavidin-coated magnetic beads. On-beads experiments indicate that efficacy of trapping can vary dramatically depending on quadruplex and G4-ligand topologies. Moreover, photo crosslinking moiety, introduced on some compounds, has not shown any improvement of the trapping. However, the development of this method and the design of the capture compounds have led to an optimal isolation of telomeric G-quadruplex forming sequences, from genomic DNA.
8

Study of DNA G-quadruplex structures by Nuclear Magnetic Resonance (NMR) / Etude des structures de l'ADN G-quadruplex par résonance magnétique nucléaire

Kerkour, Abdelaziz 15 December 2014 (has links)
Les G-quadruplexes (G4) sont des structures d'acides nucléiques non-canoniques formées par des séquences riches en Guanines (G) principalement localisées dans les telomères et les régions promotrices des oncogènes. Elles sont constituées de l'empilement de plusieurs tétrades de G en présence de cations. En utilisant la spectroscopie par RMN, nous avons caractérisé l'interaction entre le ligand TAP et le G4 télomérique humain constituée de la séquence d(AG3(T2AG3)3). CD et RMN 1D 1H ont été utilisés pour suivre l'interaction entre les deux partenaires. RMN 2D a été utilisé pour attribuer sans ambiguïté toutes les résonances de 1H dans le complexe et d'explorer le site d'interaction. Un modèle illustrant l'interaction de TAP avec 22AG au niveau des sillons et boucles a été généré. Une autre partie de ce travail consiste en l'étude du G4 tétra-moléculaire formé par TG4T et son interaction avec des ligands G4 par la RMN dans les cellules. Des spectres 1H-15N HMQC ont été effectués à l'intérieur de Xenopus laevis et les lysats des cellules HeLa et comparés avec ceux observés dans les conditions in vitro ce qui a montré une bonne stabilité de G4 à l'intérieur de la cellule. En outre, l'interaction de d [TG4T]4 avec des ligands spécifiques de G4 présentant trois différents modes d'interaction a également été étudiée. Le ligand 360A a montré un comportement prometteur. Enfin, dans la dernière partie, différentes séquences de promoteur Kras ont été criblés par RMN pour sélectionner des candidats pour la détermination de structure haute résolution. Deux séquences différentes ont été sélectionnées et caractérisées par spectroscopie CD. La stabilisation des structures G4 formées par ces séquences en interaction avec différents ligands a également été étudiée. Une titration RMN 1D 1H entre 22RT et le ligand Braco19 a montré un comportement intéressant de k-ras G4 par la formation d'espèces intermédiaires lors de l'addition de Braco19. / G-quadruplexes (G4) are non-canonical nucleic acid structures formed by G-rich sequences mainly localized in telomeres and promoter regions of oncogenes. They are built from the stacking of several G-quartets in the presence of cations. Using NMR spectroscopy, we have characterized the interaction between the TAP ligand and the human telomeric G4 formed by the sequence d(AG3(T2AG3)3). CD and 1D 1H NMR spectroscopy were used to follow the interaction between the two partners. 2D NMR was used to assign unambiguously all 1H resonances in the complex and to explore the binding site. A model depicting the interaction of TAP with 22AG in grooves and loops was generated. Another part of this work consists in the study of tetramolecular G4 formed by TG4T and its interaction with G4 ligands by in-cell NMR. 1H-15N HMQC spectra were performed inside Xenopus laevis and HeLa cell lysates compared to those observed in vitro conditions showing a good stability of G4 inside the cell. Furthermore, the interaction of d[TG4T]4 with three G4 specific ligands presenting different mode of interaction was also investigated. The ligand 360A showed a promising behavior. Finally, in the last part, different sequences of Kras promoter were screened by NMR to select good candidates for high resolution structure determination. Two different sequences were selected and characterized by CD spectroscopy. The stabilization of G4 structures formed by these sequences in interaction with different ligands was also investigated. A 1D 1H NMR titration between Braco19 and 22RT showed an interesting behavior of k-ras G4 by the formation of intermediate species upon the addition of Braco19.
9

Studies into the formation, kinetics and mechanics of RNA G-quadruplexes

Zhang, Amy Yun Qing January 2013 (has links)
No description available.
10

A Comprehensive Survey and Deep Learning-Based Prediction on G-quadruplex Formation and Biological Functions

Fang, Shuyi 09 1900 (has links)
Indiana University-Purdue University Indianapolis (IUPUI) / The G-quadruplexes (G4s) are guanine-rich four-stranded DNA/RNA structures, which have been found throughout the human genome. G4s have been reported to affect chromatin structure and are involved in important biological processes at transcriptional and epigenetic levels. However, the underlying molecular mechanisms and locating of G4 still remain elusive due to the complexity of G4s. Taking advantage of the development of high-throughput sequencing technologies and machine learning approaches, we constructed this comprehensive investigation on G4 structures, including discovery of a novel marker for functional human hematopoietic stem cells and gained interest in G4 structure, exploring association between G4 and genomic factors by incorporating multi-omics data, and development of a deep-learningbased G4 prediction tool with G4 motif. First, we discovered ADGRG1 as a novel marker for functional human hematopoietic stem cells and its regulation through transcription activities. Our interest in G4s was stimulated while the transcription-related investigations. Next, we analyzed the genome-wide distribution properties of G4s and uncovered the associations of G4 with other epigenetic and transcriptional mechanisms to coordinate gene transcription. We explored that different-confidence G4 groups correlated differently with epigenetic regulatory elements and revealed that G4 structures could correlate with gene expression in two opposite ways depending on their locations and forming strands. Some transcription factors were identified to be over-represented with G4 emergence. We found distinct consensus sequences enriched in the G4 feet, with a high GC content in the feet of high-confidence G4s and a high TA content in solely predicted G4 feet. As for the last part, we developed a novel deep-learning-based prediction tool for DNA G4s with G4 motifs. Considering the classical G4 motif, we applied bi-directional LSTM model with attention method, which captures sequential information, and showed good performance in whole-genome level prediction of DNA G4s with the certified G4 pattern. Our comprehensive work investigated G4 with its functions and predictions and provided a better understanding of G4s on multi-omics level and computational information capture riding the wave of deep learning. / 2023-04-03

Page generated in 0.051 seconds