• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • No language data
  • Tagged with
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Efficient verification of universal and intermediate quantum computing

Kapourniotis, Theodoros January 2016 (has links)
The promise of scalable quantum technology appears more realistic, after recent advances in both theory and experiment. Assuming a quantum computer is developed, the task of verifying the correctness of its outcome becomes crucial. Unfortunately, for a system that involves many particles, predicting its evolution via classical simulation becomes intractable. Moreover, verification of the outcome by computational methods, i.e. involving a classical witness, is believed inefficient for the hardest problems solvable by a quantum computer. A feasible alternative to verify quantum computation is via cryptographic methods, where an untrusted prover has to convince a weak verifier for the correctness of his outcome. This is the approach we take in this thesis. In the most standard configuration the prover is capable of computing all polynomial-time quantum circuits and the verifier is restricted to classical with very modest quantum power. The goal of existing verification protocols is to reduce the quantum requirements for the verifier - ideally making it purely classical - and reduce the communication complexity. In Part II we propose a composition of two existing verification protocols [Fitzsimons and Kashefi, 2012], [Aharonov et al., 2010] that achieves quadratic improvement in communication complexity, while keeping the quantum requirements for the verifier modest. Along this result, several new techniques are proposed, including the generalization of [Fitzsimons and Kashefi, 2012] to prime dimensions. In Part III we discuss the idea of model-specific quantum verification, where the prover is restricted to intermediate quantum power, i.e. between full-fledged quantum and purely classical, thus more feasible experimentally. As a proof of principle we propose a verification protocol for the One-Pure-Qubit computer [Knill and Laflamme, 1998], which tolerates noise and is capable of computing hard problems such as large matrix trace estimation. The verification protocol is an adaptation of [Fitzsimons and Kashefi, 2012] running on Measurement-Based Quantum Computing with newly proved properties of the underlying resources. Connections of quantum verification to other security primitives are considered in Part IV. Authenticated quantum communication has been already proved to relate to quantum verification. We expand this by proposing a quantum authentication protocol derived from [Fitzsimons and Kashefi, 2012] and discuss implications to verification with purely classical verifier. Connections between quantum security primitives, namely blindness - prover does not learn the computation -, and classical security are considered in Part V. We introduce a protocol where a client with restricted classical resources computes blindly a universal classical gate with the help of an untrusted server, by adding modest quantum capabilities to both client and server. This example of quantum-enhanced classical security we prove to be a task classically impossible.
2

Robust verification of quantum computation

Gheorghiu, Alexandru January 2018 (has links)
Quantum computers promise to offer a considerable speed-up in solving certain problems, compared to the best classical algorithms. In many instances, the gap between quantum and classical running times is conjectured to be exponential. While this is great news for those applications where quantum computers would provide such an advantage, it also raises a significant challenge: how can classical computers verify the correctness of quantum computations? In attempting to answer this question, a number of protocols have been developed in which a classical client (referred to as verifier) can interact with one or more quantum servers (referred to as provers) in order to certify the correctness of a quantum computation performed by the server(s). These protocols are of one of two types: either there are multiple non-communicating provers, sharing entanglement, and the verifier is completely classical; or, there is a single prover and the classical verifier has a device for preparing or measuring quantum states. The latter type of protocols are, arguably, more relevant to near term quantum computers, since having multiple quantum computers that share a large amount of entanglement is, from a technological standpoint, extremely challenging. Before the realisation of practical single-prover protocols, a number of challenges need to be addressed: how robust are these protocols to noise on the verifier's device? Can the protocols be made fault-tolerant without significantly increasing the requirements of the verifier? How do we know that the verifier's device is operating correctly? Could this device be eliminated completely, thus having a protocol with a fully classical verifier and a single quantum prover? Our work attempts to provide answers to these questions. First, we consider a single-prover verification protocol developed by Fitzsimons and Kashefi and show that this protocol is indeed robust with respect to deviations on the quantum state prepared by the verifier. We show that this is true even if those deviations are the result of a correlation with the prover's system. We then use this result to give a verification protocol which is device- independent. The protocol consists of a verifier with a measurement device and a single prover. Device-independence means that the verifier need not trust the measurement device (nor the prover) which can be assumed to be fully malicious (though not communicating with the prover). A key element in realising this protocol is a robust technique of Reichardt, Unger and Vazirani for testing, using non-local correlations, that two untrusted devices share a large number of entangled states. This technique is referred to as rigidity of non-local correlations. Our second result is to prove a rigidity result for a type of quantum correlations known as steering correlations. To do this, we first show that steering correlations can be used in order to certify maximally entangled states, in a setting in which each test is independent of the previous one. We also show that the fidelity with which we characterise the state, in this specific test, is optimal. We then improve the previous result by removing the independence assumption. This then leads to our desired rigidity result. We make use of it, in a similar fashion to the device-independent case, in order to give a verification protocol that is one-sided device-independent. The importance of this application is to show how different trust assumptions affect the efficiency of the protocol. Next, we describe a protocol for fault-tolerantly verifying quantum computations, with minimal "quantum requirements" for the verifier. Specifically, the verifier only requires a device for measuring single-qubit states. Both this device, and the prover's operations are assumed to be prone to errors. We show that under standard assumptions about the error model, it is possible to achieve verification of quantum computation using fault-tolerant principles. As a proof of principle, and to better illustrate the inner workings of the protocol, we describe a toy implementation of the protocol in a quantum simulator, and present the results we obtained, when running it for a small computation. Finally, we explore the possibility of having a verification protocol, with a classical verifier and a single prover, such that the prover is blind with respect to the verifier's computation. We give evidence that this is not possible. In fact, our result is only concerned with blind quantum computation with a classical client, and uses complexity theoretic results to argue why it is improbable for such a protocol to exist. We then use these complexity theoretic techniques to show that a client, with the ability to prepare and send quantum states to a quantum server, would not be able to delegate arbitrary NP problems to that server. In other words, even a client with quantum capabilities cannot exploit those capabilities to delegate the computation of NP problems, while keeping the input, to that computation, private. This is again true, provided certain complexity theoretic conjectures are true.

Page generated in 0.5137 seconds