• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Exciton-plasmon interactions in metal-semiconductor nanostructures

Hellström, Staffan January 2012 (has links)
Semiconductor quantum dots and metal nanoparticles feature very strong light-matter interactions, which has led to their use in many photonic applications such as photodetectors, biosensors, components for telecommunications etc.Under illumination both structures exhibit collective electron-photon resonances, described in the frameworks of quasiparticles as exciton-polaritons for semiconductors and surface plasmon-polaritons for metals.To date these two approaches to controlling light interactions have usually been treated separately, with just a few simple attempts to consider exciton-plasmon interactions in a system consisting of both semiconductor and metal nanostructures.In this work, the exciton-polaritons and surface \\plasmon-polaritons are first considered separately, and then combined using the Finite Difference Time Domain numerical method coupled with a master equation for the exciton-polariton population dynamics.To better understand the properties of excitons and plasmons, each quasiparticle is used to investigate two open questions - the source of the Stokes shift between the absorption and luminescence peaks in quantum dots, and the source of the photocurrent increase in quantum dot infrared photodetectors coated by a thin metal film with holes. The combined numerical method is then used to study a system consisting of multiple metal nanoparticles close to a quantum dot, a system which has been predicted to exhibit quantum dot-induced transparency, but is demonstrated to just have a weak dip in the absorption. / <p>QC 20120417</p>
2

Optical and Transport Properties of Quantum Dots in Dot-In-A-Well Systems and Graphene-Like Materials

Chaganti, Venkata 17 December 2015 (has links)
Quantum dots exhibit strongly size-dependent optical and electrical properties. The ability to join the dots into complex assemblies creates many opportunities for scientific discovery. This motivated our present research work on QDIPs, DWELLs, and graphene like QDs. The intention of this research was to study the size dependent achievements of QDIPs, DWELLs, and graphene like QDs with those of competitive technologies, with the emphasis on the material properties, device structure, and their impact on the device performance. In this dissertation four research studies pertaining to optical properties of quantum dot and dot-in-a-well infrared photodetectors, I-V characteristics of graphene quantum dots, and energy and spin texture of germanene quantum dots are presented. Improving self-assembled QD is a key issue in the increasing the absorption and improving the performance. In the present research work, an ideal self-assembled QD structure is analyzed theoretically with twenty-hole levels (Intraband optical transitions within the valence band) and twenty-electron energy levels (DWELL). Continuing the efforts to study self-assembled QDs we extended our work to graphene like quantum dots (graphene and germanene) to study the electronic transport properties. We study numerically the intraband optical transitions within the valence band of InxGa1-xAs/GaAs pyramidal quantum dots. We analyze the possibility of tuning of corresponding absorption spectra by varying the size and composition of the dots. Both ‘x ’ and the size of the quantum dot base are varied. We have found that the absorption spectra of such quantum dots are more sensitive to the in-plane incident light. We present numerically obtained absorption optical spectra of n-doped InAs/In0.15Ga0.85As/GaAs quantum dot-in-a-well systems. The absorption spectra are mainly determined by the size of the quantum dot and have weak dependence on the thickness of the quantum well and position of the dot in a well. The dot-in-a-well system is sensitive to both in-plane and out-of-plane polarizations of the incident light with much stronger absorption intensities for the in-plane-polarized light. We also present theoretically obtained I-V characteristics of graphene quantum dots, which are realized as a small piece of monolayer graphene. We describe graphene within the nearest-neighbor tight-binding model. The current versus the bias voltage has typical step-like shape, which is due to discrete energy spectrum of the quantum dot. The current through the dot system also depends on the position of the electrodes relative to the quantum dot. In relation to graphene quantum dots, we present our study of buckled graphene-like materials, like germanene and silicene. We consider theoretically germanene quantum dot, consisting of 13, 27, and 35 germanium atoms. Due to strong spin-orbit interaction and buckled structure of the germanene layer, the direction of the spin of an electron in the quantum dot depends on both the electron energy and external perpendicular electric field. With variation of energy, the direction of spin changes by approximately 4.50. Application of external electric field results in rotation of electron spin by approximately 0.50, where the direction of rotation depends on the electron energy.

Page generated in 0.1214 seconds