• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 390
  • 36
  • 36
  • 35
  • 20
  • 10
  • 9
  • 9
  • 9
  • 9
  • 9
  • 9
  • 7
  • 6
  • 3
  • Tagged with
  • 689
  • 689
  • 221
  • 69
  • 60
  • 54
  • 50
  • 44
  • 43
  • 42
  • 41
  • 40
  • 39
  • 36
  • 34
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
41

The collision of plane waves in general relativity

Hayward, Sean A. January 1990 (has links)
No description available.
42

Functional approach to non-uniform strings

Perry, H. January 1991 (has links)
No description available.
43

The effect of intense laser radiation on atomic collisions

Young, Stephen Michael Radley January 1991 (has links)
No description available.
44

The rank-one rotating mass matrix hypothesis : a general and a model specific study

Baker, Michael James January 2011 (has links)
In this thesis we investigate whether a rank-one rotating mass matrix extended to solve the strong CP problem can, through the mass leakage mechanism, account for fermion masses, mixing angles and a $theta_{CP}$ term of order unity. In the first part we find restrictions placed on the rotation of the rank-one mass matrix by experimental data. We demonstrate that a smooth rotation of the mass matrix can reproduce the experimentally determined fermion masses and mixing angles and give $theta_{CP}$ = 1.45 radians. We then fit the speed of rotation at high ($> 1$ GeV) scales. Using this rotation we make predictions for Higgs branching ratios for a range of Higgs masses, finding a suppression of $Gamma(H ightarrow car{c})$ compared to the standard model and significant flavour violating branching ratios. In the second part we study the framed standard model (FSM). We calculate the strong framon one-loop contribution to the rotation of its rank-one mass matrix and account for the non-trivial metric on its internal symmetry space. We find that the FSM can reproduce the hierarchy seen in the fermion masses and the CKM matrix, fit $theta_{CP}sim0.3$ radians and find $|U_{mu3}|sim0.8$. Similar results are found if QCD running is included, except that $|U_{mu3}|>0.95$. We compare the FSM rotation to the rotation found in first part and find they are in good agreement above $mu=m_c$. We go on to show that the predictions for Higgs decay are comparable to those found in the general study. In the final part we calculate the framon mass spectrum of the FSM in the hermitian gauge and find that, as expected, it agrees with the calculation performed in the triangular gauge. We find that none of the framons are massless.
45

Spectroscopy of Two Dimensional Electron Systems Comprising Exotic Quasiparticles

Rhone, Trevor David Nathaniel January 2012 (has links)
In this dissertation I present inelastic and elastic light scattering studies of collective states emerging from interactions in electron systems confined to two dimensions. These studies span the first, second and third Landau levels. I report for the first time, high energy excitations of composite fermions in the quantum fluid at v = 1/3. The high energies discovered represent excitations across multiple composite fermion energy levels, demonstrating the topological robustness of the fractional quantum Hall state at v = 1/3. This study sets the ground work for similar measurements of states in the second Landau level, such as those at v = 5/2. I present the first light scattering studies of low energy excitations of quantum fluids in the second Landau level. The study of low energy excitations of the quantum fluid at 3 ≥ v ≥ 5/2 reveals a rapid loss of spin polarization for v ≤ 3, as monitored by the intensity of the spin wave excitation at the Zeeman energy. The emergence of a continuum of low-lying excitations for v ≤ 3 reveals competing quantum phases in the second Landau level with intriguing roles of spin degrees of freedom and phase inhomogeneity. The first light scattering studies of the electron systems in the third Landau level are reported here. Measurements of low energy excitations and their spin degrees of freedom reveal contrasting behavior of states in the second and third Landau levels. I discuss these measurements in the context of the charge density wave phases, that are believed, by some, to dominate the third Landau level, and suggest ways of verifying this belief using light scattering. Distinct behavior in the dispersion of the spin wave at v = 3 is measured for the first time. The study may highlight differences in the first and second Landau levels that are manifested through the electron wavefunctions. In addition to intra-Landau level measurements, inter-Landau level studies are also reported. The results of which reveal roles of spin degrees of freedom and many body interactions in odd denominator integer quantum Hall states.
46

Probing Electronic and Thermoelectric Properties of Single Molecule Junctions

Widawsky, Jonathan R. January 2013 (has links)
In an effort to further understand electronic and thermoelectric phenomenon at the nanometer scale, we have studied the transport properties of single molecule junctions. To carry out these transport measurements, we use the scanning tunneling microscope-break junction (STM-BJ) technique, which involves the repeated formation and breakage of a metal point contact in an environment of the target molecule. Using this technique, we are able to create gaps that can trap the molecules, allowing us to sequentially and reproducibly create a large number of junctions. By applying a small bias across the junction, we can measure its conductance and learn about the transport mechanisms at the nanoscale. The experimental work presented here directly probes the transmission properties of single molecules through the systematic measurement of junction conductance (at low and high bias) and thermopower. We present measurements on a variety of molecular families and study how conductance depends on the character of the linkage (metal-molecule bond) and the nature of the molecular backbone. We start by describing a novel way to construct single molecule junctions by covalently connecting the molecular backbone to the electrodes. This eliminates the use of linking substituents, and as a result, the junction conductance increases substantially. Then, we compare transport across silicon chains (silanes) and saturated carbon chains (alkanes) while keeping the linkers the same and find a stark difference in their electronic transport properties. We extend our studies of molecular junctions by looking at two additional aspects of quantum transport - molecular thermopower and molecular current-voltage characteristics. Each of these additional parameters gives us further insight into transport properties at the nanoscale. Evaluating the junction thermopower allows us to determine the nature of charge carriers in the system and we demonstrate this by contrasting the measurement of amine-terminated and pyridine-terminated molecules (which exhibit hole transport and electron transport, respectively). We also report the thermopower of the highly conducting, covalently bound molecular junctions that we have recently been able to form, and learn that, because of their unique transport properties, the junction power factors, GS2, are extremely high. Finally, we discuss the measurement of molecular current-voltage curves and consider the electronic and physical effects of applying a large bias to the system. We conclude with a summary of the work discussed and an outlook on related scientific studies.
47

Probing Electronic and Thermoelectric Properties of Single Molecule Junctions

Widawsky, Jonathan R. January 2013 (has links)
In an effort to further understand electronic and thermoelectric phenomenon at the nanometer scale, we have studied the transport properties of single molecule junctions. To carry out these transport measurements, we use the scanning tunneling microscope-break junction (STM-BJ) technique, which involves the repeated formation and breakage of a metal point contact in an environment of the target molecule. Using this technique, we are able to create gaps that can trap the molecules, allowing us to sequentially and reproducibly create a large number of junctions. By applying a small bias across the junction, we can measure its conductance and learn about the transport mechanisms at the nanoscale. The experimental work presented here directly probes the transmission properties of single molecules through the systematic measurement of junction conductance (at low and high bias) and thermopower. We present measurements on a variety of molecular families and study how conductance depends on the character of the linkage (metal-molecule bond) and the nature of the molecular backbone. We start by describing a novel way to construct single molecule junctions by covalently connecting the molecular backbone to the electrodes. This eliminates the use of linking substituents, and as a result, the junction conductance increases substantially. Then, we compare transport across silicon chains (silanes) and saturated carbon chains (alkanes) while keeping the linkers the same and find a stark difference in their electronic transport properties. We extend our studies of molecular junctions by looking at two additional aspects of quantum transport - molecular thermopower and molecular current-voltage characteristics. Each of these additional parameters gives us further insight into transport properties at the nanoscale. Evaluating the junction thermopower allows us to determine the nature of charge carriers in the system and we demonstrate this by contrasting the measurement of amine-terminated and pyridine-terminated molecules (which exhibit hole transport and electron transport, respectively). We also report the thermopower of the highly conducting, covalently bound molecular junctions that we have recently been able to form, and learn that, because of their unique transport properties, the junction power factors, GS², are extremely high. Finally, we discuss the measurement of molecular current-voltage curves and consider the electronic and physical effects of applying a large bias to the system. We conclude with a summary of the work discussed and an outlook on related scientific studies.
48

Quantum Theory of Entropy Production

Solano-Carrillo, Edgardo S. January 2018 (has links)
In this thesis we develop an approach to nonequilibrium quantum-statistical mechanics which is based on the consideration of the thermodynamic entropy as being a quantum observable with an associated hermitian operator and with its own equation of motion, from which the rate of entropy production can be studied. The relationship of this quantum observable---the expectation value of which is proved to obey the laws of thermodynamics and is thus called the thermodynamic entropy---with heat dissipation in quantum many-body systems is investigated in detail. After showing how the classical theory of nonequilibrium thermodynamics is obtained from our entropy-production formalism in the limit of very weakly coupled subsystems of a larger isolated quantum system, the solution of the equation of motion for the thermodynamic entropy operator is formally obtained and applied to the case of electrons interacting with phonons and being driven by an external electric field, arriving at an explicit expression for the Joule heat without any a priori consideration of the rate of change of the energy of the system. Finally, the formalism is applied to solve a puzzle introduced with the most basic model for atom-light interactions: the Jaynes-Cummings model. Without using the correct thermodynamic arguments implied by our entropy-production theory, this model leads to the conclusion that a stream of two-level atoms sent to a cavity filled with monochromatic photons---in the so called one-atom maser configuration---thermalize, under off-resonant conditions, to a temperature different from that of the photons, casting doubts on the validity of the principle of conservation of energy.
49

Charge-writing induced quantum devices in graphene

Herbschleb, Ernst David January 2014 (has links)
No description available.
50

Theory and applications of photon-atom interactions in quantum information: 光子與原子相互作用理論及其在量子訊息論中的應用. / 光子與原子相互作用理論及其在量子訊息論中的應用 / CUHK electronic theses & dissertations collection / Digital dissertation consortium / Theory and applications of photon-atom interactions in quantum information: Guang zi yu yuan zi xiang hu zuo yong li lun ji qi zai liang zi xun xi lun zhong de ying yong. / Guang zi yu yuan zi xiang hu zuo yong li lun ji qi zai liang zi xun xi lun zhong de ying yong

January 2003 (has links)
Chan Tian Wen. / "July 2003." / Thesis (Ph.D.)--Chinese University of Hong Kong, 2003. / Includes bibliographical references (p. 174-181). / Electronic reproduction. Hong Kong : Chinese University of Hong Kong, [2012] System requirements: Adobe Acrobat Reader. Available via World Wide Web. / Electronic reproduction. Ann Arbor, MI : ProQuest Information and Learning Company, [200-] System requirements: Adobe Acrobat Reader. Available via World Wide Web. / Mode of access: World Wide Web. / Abstracts in English and Chinese. / Chan Tian Wen.

Page generated in 0.1301 seconds