• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • No language data
  • Tagged with
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Computational Investigation and Parametric Study of Lateral Impact Behavior of Pressurized Pipelines

Dou, Yangqing 07 May 2016 (has links)
This thesis presents a computational study to examine lateral impact behavior of pressurized pipelines and to determine influence of internal pressure on the impact behaviors of pipelines. More than 300 numerical simulations were carried out on mild steel pipe models with different internal pressure levels and were struck at the mid-span and at the one quarter span positions. The computational results for the first time systematically revealed the effects of internal pressure, impact position, and outside diameter on the lateral impact behavior of the pipeline models. It inspects effects of important parameters such as the outside diameter and internal pressure. Quartic polynomial functions are applied to formulate the maximum crushing force (F), permanent displacement (W), and absorbed energy (E) of the pressurized pipelines during the impact problem. Response surfaces are plotted based on the generated quartic polynomial functions and the quality (accuracy) of those functions are verified through several techniques.
2

Theoretical Investigation of the Structure and Vibrational Frequencies of Water and Methanol Complexes

Craig, John Michael 01 January 2007 (has links)
Water and methanol are common solvents used in liquid chromatographic (LC) separations. It is highly desirable to model .the interactions of these solvents in order to better understand the nature of analyte solvation and its effect on retention. Therefore, structure and frequencies of complexes of these solvent molecules have been studied from a theoretical perspective as a first step in this direction. Specifically, cluster structures have been optimized at the RHF and MP2 levels in various flexible basis sets and with the counterpoise correction for basis set superposition error, and trends in the structure and binding energies of several clusters are described. Good agreement wasobtained for the water dimer with the experimental value for the binding energy of D20 using MP2 energies from 6-3 11G**/6-3 l+G** basis sets in conjunction with counterpoise optimizations and full counterpoise corrections. In this investigation harmonic frequencies have been calculated and corrected for the effects of anharmonicity by several methods, two of which are original. The first new method fits a Morse potential function to the energy computed along each normal mode. A second new method is based on fitting a quartic polynomial to energies computed along each normal mode. In cases where the quartic potential function is not very different from the harmonic well, a second order perturbation formula provides a reasonable approximation to the anharmonic vibrational frequencies. When the quartic potential is very far from the harmonic potential, a variational treatment of the vibrations is required. We find that the Morse method delivers reasonable estimates of frequencies of anharmonic motions at lower cost than multi-point potential mapping/multiple geometry optimization/Taylor series methods, and is more successful at predicting intermolecular frequencies than the anharmonic VSCF methods found in GAMESS software. Variational calculations using the quartic polynomials produce estimates of frequencies comparable to the more costly VSCF method. Both the Morse method and polynomial method are very fast computationally relative to these and other methods found in the literature.

Page generated in 0.0573 seconds