Spelling suggestions: "subject:"tripositive"" "subject:"dipositive""
1 |
On positivities of links: an investigation of braid simplification and defect of Bennequin inequalitiesHamer, Jesse A. 01 December 2018 (has links)
We investigate various forms of link positivity: braid positivity, strong quasipositivity, and quasi- positivity. On the one hand, this investigation is undertaken in the context of braid simplification: we give sufficient conditions under which a given braid word is conjugate to a braid word with strictly fewer negative bands. On the other hand, we use the famous Bennequin inequality to define a new link invariant: the defect of the Bennequin inequality, or 3-defect, and give criteria in terms of the 3-defect under which a given link is (strongly) quasipositive.
Moreover, we use the 4-dimensional analogue of the Bennequin inequality, the slice Bennequin inequality in order to define the analogous defect of the slice Bennequin inequality, or 4-defect. We then investigate the relationship between the 4-defect and the most complicated class of 3- braids, Xu’s NP-form 3-braids, and establish several bounds. We also conjecture a formula for the signature of NP-form 3-braids which uses a new and easily computable NP-form 3-braid invariant, the offset.
Finally, the appendices provide lists of all quasipositive and strongly quasipositive knots with at most 12 crossings (with two exceptions, 12n239 and 12n512), along with accompanying quasipositive or strongly quasipositive braid words. Many of these knots did not have previously established positivities or braid words reflecting these positivities—these facts were discovered using various criteria (conjectural or proven) expressed throughout this thesis.
|
2 |
Computing the Rank of BraidsMeiners, Justin 06 April 2021 (has links)
We describe a method for computing rank (and determining quasipositivity) in the free group using dynamic programming. The algorithm is adapted to computing upper bounds on the rank for braids. We test our method on a table of knots by identifying quasipositive knots and calculating the ribbon genus. We consider the possibility that rank is not theoretically computable and prove some partial results that would classify its computational complexity. We then present a method for effectively brute force searching band presentations of small rank and conjugate length.
|
3 |
Relative Symplectic Caps, Fibered Knots And 4-GenusKulkarni, Dheeraj 07 1900 (has links) (PDF)
The 4-genus of a knot in S3 is an important measure of complexity, related to the unknotting number. A fundamental result used to study the 4-genus and related invariants of homology classes is the Thom conjecture, proved by Kronheimer-Mrowka, and its symplectic extension due to Ozsv´ath-Szab´o, which say that closed symplectic surfaces minimize genus.
In this thesis, we prove a relative version of the symplectic capping theorem. More precisely, suppose (X, ω) is a symplectic 4-manifold with contact type bounday ∂X and Σ is a symplectic surface in X such that ∂Σ is a transverse knot in ∂X. We show that there is a closed symplectic 4-manifold Y with a closed symplectic submanifold S such that the pair (X, Σ) embeds symplectically into (Y, S). This gives a proof of the relative version of Symplectic Thom Conjecture. We use this to study 4-genus of fibered knots in S3 .
We also prove a relative version of the sufficiency part of Giroux’s criterion for Stein fillability, namely, we show that a fibered knot whose mondoromy is a product of positive Dehn twists bounds a symplectic surface in a Stein filling. We use this to study 4-genus of fibered knots in S3 . Using this result, we give a criterion for quasipostive fibered knots to be strongly quasipositive.
Symplectic convexity disc bundles is a useful tool in constructing symplectic fillings of contact manifolds. We show the symplectic convexity of the unit disc bundle in a Hermitian holomorphic line bundle over a Riemann surface.
|
Page generated in 0.0495 seconds