• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 1
  • Tagged with
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Géométrie asymptotique sous-linéaire : hyperbolicité, autosimilarité, invariants / Large-scale sublinear geometry : hyperbolicity, self-similarity, invariants

Pallier, Gabriel 02 September 2019 (has links)
Les équivalences sous-linéairement bilipschitziennes ont été introduites par Yves Cornulier afin de décrire les cônes asymptotiques des groupes de Lie. Elles généralisent les quasiisométries. Cette thèse construit des invariants pour l'équivalence sous-linéairement bilipschitzienne entre groupes et espaces hyperboliques au sens de Gromov, en utilisant l'analyse au bord de Gromov. Une classe d'application généralisant les homéomorphismes quasisymétriques, et une dimension conforme associée, sont introduites. Les espaces riemannien de type non-compact et de rang un, ainsi que certains espaces homogènes de courbure strictement négative, sont classifiés à équivalence sous-linéairement bilipschitzienne près. / Sublinearly biLipschitz equivalences have been introduced by Yves Cornulier as a means of describing the asymptotic cones of Lie groups; they include and generalize quasiisometries. This thesis provides invariants for sublinearly biLipschitz equivalence between Gromov-hyperbolic groups and spaces using analysis on the Gromov boundary. A class of applications generalizing quasisymmetric mappings, and a corresponding conformal dimension, are introduced as tools. Riemannian symmetric spaces of noncompact type as well as a subclass of homogeneous negatively curved Riemannian manifolds are classified up to sublinearly biLipschitz equivalence.
2

Rigidity of Quasiconformal Maps on Carnot Groups

Medwid, Mark Edward 02 August 2017 (has links)
No description available.

Page generated in 0.0787 seconds