• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 16
  • 4
  • 2
  • 1
  • 1
  • Tagged with
  • 32
  • 32
  • 14
  • 11
  • 10
  • 8
  • 7
  • 7
  • 6
  • 6
  • 6
  • 5
  • 5
  • 5
  • 5
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Performance Modelling of Database Designs using a Queueing Networks Approach. An investigation in the performance modelling and evaluation of detailed database designs using queueing network models.

Osman, Rasha Izzeldin Mohammed January 2010 (has links)
Databases form the common component of many software systems, including mission critical transaction processing systems and multi-tier Internet applications. There is a large body of research in the performance of database management system components, while studies of overall database system performance have been limited. Moreover, performance models specifically targeted at the database design have not been extensively studied. This thesis attempts to address this concern by proposing a performance evaluation method for database designs based on queueing network models. The method is targeted at designs of large databases in which I/O is the dominant cost factor. The database design queueing network performance model is suitable in providing what if comparisons of database designs before database system implementation. A formal specification that captures the essential database design features while keeping the performance model sufficiently simple is presented. Furthermore, the simplicity of the modelling algorithms permits the direct mapping between database design entities and queueing network models. This affords for a more applicable performance model that provides relevant feedback to database designers and can be straightforwardly integrated into early database design development phases. The accuracy of the modelling technique is validated by modelling an open source implementation of the TPC-C benchmark. The contribution of this thesis is considered to be significant in that the majority of performance evaluation models for database systems target capacity planning or overall system properties, with limited work in detailed database transaction processing and behaviour. In addition, this work is deemed to be an improvement over previous methodologies in that the transaction is modelled at a finer granularity, and that the database design queueing network model provides for the explicit representation of active database rules and referential integrity constraints. / Iqra Foundation
2

Performance Modelling of Database Designs using a Queueing Networks Approach. An investigation in the performance modelling and evaluation of detailed database designs using queueing network models.

Osman, Rasha Izzeldin Mohammed January 2010 (has links)
Databases form the common component of many software systems, including mission critical transaction processing systems and multi-tier Internet applications. There is a large body of research in the performance of database management system components, while studies of overall database system performance have been limited. Moreover, performance models specifically targeted at the database design have not been extensively studied. This thesis attempts to address this concern by proposing a performance evaluation method for database designs based on queueing network models. The method is targeted at designs of large databases in which I/O is the dominant cost factor. The database design queueing network performance model is suitable in providing what if comparisons of database designs before database system implementation. A formal specification that captures the essential database design features while keeping the performance model sufficiently simple is presented. Furthermore, the simplicity of the modelling algorithms permits the direct mapping between database design entities and queueing network models. This affords for a more applicable performance model that provides relevant feedback to database designers and can be straightforwardly integrated into early database design development phases. The accuracy of the modelling technique is validated by modelling an open source implementation of the TPC-C benchmark. The contribution of this thesis is considered to be significant in that the majority of performance evaluation models for database systems target capacity planning or overall system properties, with limited work in detailed database transaction processing and behaviour. In addition, this work is deemed to be an improvement over previous methodologies in that the transaction is modelled at a finer granularity, and that the database design queueing network model provides for the explicit representation of active database rules and referential integrity constraints. / Iqra Foundation
3

Performance Modelling of Database Designs using a Queueing Networks Approach. An investigation in the performance modelling and evaluation of detailed database designs using queueing network models.

Osman, Rasha Izzeldin Mohammed January 2010 (has links)
Databases form the common component of many software systems, including mission critical transaction processing systems and multi-tier Internet applications. There is a large body of research in the performance of database management system components, while studies of overall database system performance have been limited. Moreover, performance models specifically targeted at the database design have not been extensively studied. This thesis attempts to address this concern by proposing a performance evaluation method for database designs based on queueing network models. The method is targeted at designs of large databases in which I/O is the dominant cost factor. The database design queueing network performance model is suitable in providing what if comparisons of database designs before database system implementation. A formal specification that captures the essential database design features while keeping the performance model sufficiently simple is presented. Furthermore, the simplicity of the modelling algorithms permits the direct mapping between database design entities and queueing network models. This affords for a more applicable performance model that provides relevant feedback to database designers and can be straightforwardly integrated into early database design development phases. The accuracy of the modelling technique is validated by modelling an open source implementation of the TPC-C benchmark. The contribution of this thesis is considered to be significant in that the majority of performance evaluation models for database systems target capacity planning or overall system properties, with limited work in detailed database transaction processing and behaviour. In addition, this work is deemed to be an improvement over previous methodologies in that the transaction is modelled at a finer granularity, and that the database design queueing network model provides for the explicit representation of active database rules and referential integrity constraints. / Iqra Foundation
4

An inquiry into the optimal loads on servers in a queueing network

Biermann, Jeanette Aileen Stifel January 1991 (has links)
No description available.
5

Performance modelling of database designs using a queueing networks approach : an investigation in the performance modelling and evaluation of detailed database designs using queueing network models

Osman, Rasha Izzeldin Mohammed January 2010 (has links)
Databases form the common component of many software systems, including mission critical transaction processing systems and multi-tier Internet applications. There is a large body of research in the performance of database management system components, while studies of overall database system performance have been limited. Moreover, performance models specifically targeted at the database design have not been extensively studied. This thesis attempts to address this concern by proposing a performance evaluation method for database designs based on queueing network models. The method is targeted at designs of large databases in which I/O is the dominant cost factor. The database design queueing network performance model is suitable in providing what if comparisons of database designs before database system implementation. A formal specification that captures the essential database design features while keeping the performance model sufficiently simple is presented. Furthermore, the simplicity of the modelling algorithms permits the direct mapping between database design entities and queueing network models. This affords for a more applicable performance model that provides relevant feedback to database designers and can be straightforwardly integrated into early database design development phases. The accuracy of the modelling technique is validated by modelling an open source implementation of the TPC-C benchmark. The contribution of this thesis is considered to be significant in that the majority of performance evaluation models for database systems target capacity planning or overall system properties, with limited work in detailed database transaction processing and behaviour. In addition, this work is deemed to be an improvement over previous methodologies in that the transaction is modelled at a finer granularity, and that the database design queueing network model provides for the explicit representation of active database rules and referential integrity constraints.
6

Dynamic Scheduling of Open Multiclass Queueing Networks in a Slowly Changing Environment

Chang, Junxia 22 November 2004 (has links)
This thesis investigates the dynamic scheduling of computer communication networks that can be periodically overloaded. Such networks are modelled as mutliclass queueing networks in a slowly changing environment. A hierarchy framework is established to search for a suitable scheduling policy for such networks through its connection with stochastic fluid models. In this work, the dynamic scheduling of a specific multiclass stochastic fluid model is studied first. Then, a bridge between the scheduling of stochastic fluid models and that of the queueing networks in a changing environment is established. In the multiclass stochastic fluid model, the focus is on a system with two fluid classes and a single server whose capacity can be shared arbitrarily among these two classes. The server may be overloaded transiently and it is under a quality of service contract which is indicated by a threshold value of each class. Whenever the fluid level of a certain class is above the designated threshold value, the penalty cost is incurred to the server. The optimal and asymptotically optimal resource allocation policies are specified for such a stochastic fluid model. Afterwards, a connection between the optimization of the queueing networks and that of the stochastic fluid models is established. This connection involves two steps. The first step is to approximate such networks by their corresponding stochastic fluid models with a proper scaling method. The second step is to construct a suitable policy for the queueing network through a successful interpretation of the stochastic fluid model solution, where the interpretation method is provided in this study. The results developed in this thesis facilitate the process of searching for a nearly optimal scheduling policy for queueing networks in a slowly changing environment.
7

Analytical models to evaluate system performance measures for vehicle based material-handling systems under various dispatching policies

Lee, Moonsu 29 August 2005 (has links)
Queueing network-based approximation models were developed to evaluate the performance of fixed-route material-handling systems supporting a multiple workcenter manufacturing facility. In this research, we develop analytical models for fixed-route material-handling systems from two different perspectives: the workcenters?? point of view and the transporters?? point of view. The state-dependent nature of the transportation time is considered here for more accurate analytical approximation models for material-handling systems. Also, an analytical methodology is developed for analytical descriptions of the impact of several different vehicledispatching policies for material-handling systems. Two different types of vehicledispatching policies are considered. Those are workcenter-initiated vehicle dispatching rules and vehicle-initiated vehicle dispatching rules. For the workcenterinitiated vehicle dispatching rule, the Closest Transporter Allocation Rule (CTAR) was used to assign empty transporters to jobs needing to be moved between various workcenters. On the other hand, four different vehicle-initiated vehicle dispatching rules, Shortest Distance Dispatching Rule (SDR), Time Limit/Shortest DistanceDispatching Rule (TL/SDR), First-Come First-Serve Dispatching Rule (FCFSR), Longest Distance Dispatching Rule (LDR), are used to select job requests from workcenters when a transporter is available. From the models with a queue space limit of one at each workcenter and one transporter, two different types of extensions are considered. First, the queue space limit at each workcenter is increased from one to two while the number of transporters remains at one. Second, the number of transporters in the system is also increased from one to two while maintaining the queue space limit of one at each workcenter. Finally, using a simulation approach, we modified the Nearest Neighbor (NN) heuristic dispatching procedure for multi-load transporters proposed by Tanchoco and Co (1994) and tested for a fixed-route material-handling system. The effects of our modified NN and the original NN transporter dispatching procedures on the system performance measures, such as WIP or Cycle Time were investigated and we demonstrated that the modified NN heuristic dispatching procedure performs better than the original NN procedure in terms of these system performance measures.
8

Performance and security trade-offs in high-speed networks : an investigation into the performance and security modelling and evaluation of high-speed networks based on the quantitative analysis and experimentation of queueing networks and generalised stochastic Petri nets

Miskeen, Guzlan Mohamed Alzaroug January 2013 (has links)
Most used security mechanisms in high-speed networks have been adopted without adequate quantification of their impact on performance degradation. Appropriate quantitative network models may be employed for the evaluation and prediction of 'optimal' performance vs. security trade-offs. Several quantitative models introduced in the literature are based on queueing networks (QNs) and generalised stochastic Petri nets (GSPNs). However, these models do not take into consideration Performance Engineering Principles (PEPs) and the adverse impact of traffic burstiness and security protocols on performance. The contributions of this thesis are based on the development of an effective quantitative methodology for the analysis of arbitrary QN models and GSPNs through discrete-event simulation (DES) and extended applications into performance vs. security trade-offs involving infrastructure and infrastructure-less high-speed networks under bursty traffic conditions. Specifically, investigations are carried out focusing, for illustration purposes, on high-speed network routers subject to Access Control List (ACL) and also Robotic Ad Hoc Networks (RANETs) with Wired Equivalent Privacy (WEP) and Selective Security (SS) protocols, respectively. The Generalised Exponential (GE) distribution is used to model inter-arrival and service times at each node in order to capture the traffic burstiness of the network and predict pessimistic 'upper bounds' of network performance. In the context of a router with ACL mechanism representing an infrastructure network node, performance degradation is caused due to high-speed incoming traffic in conjunction with ACL security computations making the router a bottleneck in the network. To quantify and predict the trade-off of this degradation, the proposed quantitative methodology employs a suitable QN model consisting of two queues connected in a tandem configuration. These queues have single or quad-core CPUs with multiple-classes and correspond to a security processing node and a transmission forwarding node. First-Come-First-Served (FCFS) and Head-of-the-Line (HoL) are the adopted service disciplines together with Complete Buffer Sharing (CBS) and Partial Buffer Sharing (PBS) buffer management schemes. The mean response time and packet loss probability at each queue are employed as typical performance metrics. Numerical experiments are carried out, based on DES, in order to establish a balanced trade-off between security and performance towards the design and development of efficient router architectures under bursty traffic conditions. The proposed methodology is also applied into the evaluation of performance vs. security trade-offs of robotic ad hoc networks (RANETs) with mobility subject to Wired Equivalent Privacy (WEP) and Selective Security (SS) protocols. WEP protocol is engaged to provide confidentiality and integrity to exchanged data amongst robotic nodes of a RANET and thus, to prevent data capturing by unauthorised users. WEP security mechanisms in RANETs, as infrastructure-less networks, are performed at each individual robotic node subject to traffic burstiness as well as nodal mobility. In this context, the proposed quantitative methodology is extended to incorporate an open QN model of a RANET with Gated queues (G-Queues), arbitrary topology and multiple classes of data packets with FCFS and HoL disciplines under bursty arrival traffic flows characterised by an Interrupted Compound Poisson Process (ICPP). SS is included in the Gated-QN (G-QN) model in order to establish an 'optimal' performance vs. security trade-off. For this purpose, PEPs, such as the provision of multiple classes with HoL priorities and the availability of dual CPUs, are complemented by the inclusion of robot's mobility, enabling realistic decisions in mitigating the performance of mobile robotic nodes in the presence of security. The mean marginal end-to-end delay was adopted as the performance metric that gives indication on the security improvement. The proposed quantitative methodology is further enhanced by formulating an advanced hybrid framework for capturing 'optimal' performance vs. security trade-offs for each node of a RANET by taking more explicitly into consideration security control and battery life. Specifically, each robotic node is represented by a hybrid Gated GSPN (G-GSPN) and a QN model. In this context, the G-GSPN incorporates bursty multiple class traffic flows, nodal mobility, security processing and control whilst the QN model has, generally, an arbitrary configuration with finite capacity channel queues reflecting 'intra'-robot (component-to-component) communication and 'inter'-robot transmissions. Two theoretical case studies from the literature are adapted to illustrate the utility of the QN towards modelling 'intra' and 'inter' robot communications. Extensions of the combined performance and security metrics (CPSMs) proposed in the literature are suggested to facilitate investigating and optimising RANET's performance vs. security trade-offs. This framework has a promising potential modelling more meaningfully and explicitly the behaviour of security processing and control mechanisms as well as capturing the robot's heterogeneity (in terms of the robot architecture and application/task context) in the near future (c.f. [1]. Moreover, this framework should enable testing robot's configurations during design and development stages of RANETs as well as modifying and tuning existing configurations of RANETs towards enhanced 'optimal' performance and security trade-offs.
9

Decomposition of general queueing network models : an investigation into the implementation of hierarchical decomposition schemes of general closed queueing network models using the principle of minimum relative entropy subject to fully decomposable constraints

Tomaras, Panagiotis J. January 1989 (has links)
Decomposition methods based on the hierarchical partitioning of the state space of queueing network models offer powerful evaluation tools for the performance analysis of computer systems and communication networks. These methods being conventionally implemented capture the exact solution of separable queueing network models but their credibility differs when applied to general queueing networks. This thesis provides a universal information theoretic framework for the implementation of hierarchical decomposition schemes, based on the principle of minimum relative entropy given fully decomposable subset and aggregate utilization, mean queue length and flow-balance constraints. This principle is used, in conjuction with asymptotic connections to infinite capacity queues, to derive new closed form approximations for the conditional and marginal state probabilities of general queueing network models. The minimum relative entropy solutions are implemented iteratively at each decomposition level involving the generalized exponential (GE) distributional model in approximating the general service and asymptotic flow processes in the network. It is shown that the minimum relative entropy joint state probability, subject to mean queue length and flow-balance constraints, is identical to the exact product-form solution obtained as if the network was separable. An investigation into the effect of different couplings of the resource units on the relative accuracy of the approximation is carried out, based on an extensive experimentation. The credibility of the method is demonstrated with some illustrative examples involving first-come-first-served general queueing networks with single and multiple servers and favourable comparisons against exact solutions and other approximations are made.
10

General queueing networks with priorities : maximum entropy analysis of general queueing network models with priority pre-emptive resume or head-of-line and non-priority based service disciplines

Tabet Aouel, Nasreddine January 1989 (has links)
Priority based scheduling disciplines are widely used by existing computer operating systems. However, the mathematical analysis and modelling of these systems present great difficulties since priority schedulling is not compatible with exact product form solutions of queueing network models (QNM's). It is therefore, necessary to employ credible approximate techniques for solving QNM's with priority classes. The principle of maximum entropy (ME) is a method of inference for estimating a probability distribution given prior information in the form of expected values. This principle is applied, based on marginal utilisation, mean queue length and idle state probability constraints, to characterise new product-form approximations for general open and closed QNM's with priority (preemptive-resume, non-preemtive head-of-line) and non-priority (first-come-first-served, processor-sharing, last-come-first-served with, or without preemtion) servers. The ME solutions are interpreted in terms of a decomposition of the original network into individual stable GIG11 queueing stations with assumed renewal arrival processes. These solutions are implemented by making use of the generalised exponential (GE) distributional model to approximate the interarrival-time and service-time distributions in the network. As a consequence the ME queue length distribution of the stable GE/GEzl priority queue, subject to mean value constraints obtained via classical queueing theory on bulk queues, is used as a 'building block' together with corresponding universal approximate flow formulae for the analysis of general QNM's with priorities. The credibility of the ME method is demonstrated with illustrative numerical examples and favourable comparisons against exact, simulation and other approximate methods are made.

Page generated in 0.0733 seconds