• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • Tagged with
  • 6
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Modeling Polarization Sensitivity of Qweak Apparatus for Transverse Beam Spin

Radloff, Robert W., Jr. January 2018 (has links)
No description available.
2

Parity-Violating Elastic Electron Nucleon Scattering: Measurement of the Strange Quark Content of the Nucleon and Towards a Measurement of the Weak Charge of the Proton

Mammei, Juliette Mae 04 June 2010 (has links)
The experiments discussed in this thesis exploit parity violation in elastic electron proton scattering in order to measure properties of the nucleon. Both experiments make use of the high quality, highly polarized electron beam available at Thomas Jefferson National Accelerator Facility. Q<sub>weak</sub> will measure the weak mixing angle, sin²θ<sub>W</sub>, via a measurement of the weak charge of the proton, at a four-momentum transfer, Q² ~ 0.026 GeV²/c². The precision of this measurement gives Q<sub>weak</sub> access to new physics at the scale of 2.3 TeV, making it a test of the standard model. The G⁰ experimental program provides the fully separated contributions of the strange quark to the charge and magnetization distributions of the nucleon at two different values of four-momentum transfer, Q² ~ 0.22 and 0.63 GeV²/c². The measurement of the strange quark content of the proton in the G⁰ experimental program and other parity-violating electron scattering experiments provides a measurement of the hadronic contribution to the asymmetry in Q<sub>weak</sub>. In addition, G⁰ was able to measure the parity-conserving beam normal single spin asymmetries that provide a measurement of the imaginary part of two photon exchange. The measurement of this asymmetry is necessary to understand the systematic contribution to measurements of parity-violating asymmetries, but it is also an important physics result. Recent theoretical work has shown that higher order radiative effects, such as two photon exchange, may be able to explain discrepancies between experiments which measure the ratio of the electric and magnetic form factors of the proton. The measurement of the transverse or beam normal single spin asymmetries provides a benchmark for theories that estimate the size of radiative corrections that are important for precision electroweak scattering experiments such as those described in this thesis. The results of the measurement of the transverse asymmetries at backward angles in G⁰ are presented at the two values of Q² ~ 0.22 and 0.63 GeV²/c² for hydrogen. Results for deuterium, which can provide the first measurements of the beam normal single spin asymmetries on the neutron, are also presented. / Ph. D.
3

Measuring the Weak Charge of the Proton and the Hadronic Parity Violation of the N →Δ Transition

Leacock, John Deane 18 October 2012 (has links)
Qweak will determine the weak charge of the proton, QpW, via an asymmetry measurement of parity-violating elastic electron-proton scattering at low four momentum transfer to a precision of 4%. QpW has firm Standard Model prediction and is related to the weak mixing angle, sin20W, a well-defined Standard Model parameter. Qweak will probe a subset of new physics to the TeV mass scale and test the Standard Model. The details of how this measurement was performed and the analysis of the 25% elastic dataset will be presented in this thesis. Also, an analysis of an auxiliary measurement of the parity-violating asymmetry in the N >> Δ transition is presented. It is used as a systematic inelastic background correction in the elastic analysis and to extract information about the hadronic parity violation through the low energy constant, dΔ. The elastic asymmetry at Q2 = 0:0252 ± 0:0007 GeV2 was measured to be Aep = -265 ± 40 ± 22 ± 68 ppb (stat., sys., and blinding). Extrapolated to Q2 = 0, the value of the proton's weak charge was measured to be QpW = 0:077 ± 0:019 (stat. and sys.) ±0:026 (blinding). This is within 1 o of the Standard Model prediction of QpW = 0:0705 ± 0:0008. The N >> Δ inelastic asymmetry at Q2 = 0:02078 ± 0:0005 GeV2 and W = 1205 MeV was measured to be Ainel = -3:03 ± 0:65 ± 0:73 ± 0:07 ppm (stat., sys., and blinding). This result constrains the low energy constant to be dΔ = 5:8 ± 22gπ, and, if the result of the G0 experiment is included, dΔ = 5:8 ± 17gπ. This result rules out suggested large values of dΔ motivated by radiative hyperon decays. The elastic measurement is the first direct measurement of the weak charge of the proton while the inelastic measurement is only the second measurement of the neutral current excitation of the Δ resonance. It is currently the best constraint for the low energy constant, dΔ. / Ph. D.
4

Precision Measurement of the Proton's Weak Charge using Parity-Violating Electron Scattering

Duvall, Wade Sayer 15 November 2017 (has links)
The Qweak experiment has precisely determined the weak charge of the proton Qp w by measuring the parity-violating asymmetry in elastic electron-proton scattering at a low momentum transfer of Q2 = 0.0249 (GeV/c)2 . Qpw has a definite prediction in the Standard Model, and a value of sin2 θW can be extracted from it for comparison with other neutral current observables. Qweak measured the weak charge of the proton to be Qpw(P V ES) = 0.0719 ± 0.0045, which is consistent with the Standard Model value of Qp w(SM) = 0.0708 ± 0.0003. Qweak ran at the Thomas Jefferson National Accelerator Facility for two and a half years and was installed in experimental Hall C. A 180µA beam of longitudinally polarized electrons at 1.16 GeV scattered off a liquid hydrogen target of unpolarized protons. The electrons were collimated to an acceptance of 5.8◦ to 11.6◦ and then passed through a magnetic spectrometer and onto quartz Čerenkov detector bars. A detailed description of the theory and motivation behind the Qweak experiment is given. An overview of the Qweak apparatus and an in-depth discussion of the luminosity monitor performance is presented. A general overview of the Qweak analysis is also presented, with a focus on the beamline background correction, the nonlinearity measurement, and the simulation to constrain error for a rescattering effect. Also detailed here is the final, unblinded Qweak result, which determined Qpw to 6.2% and provided the highest precision measurement of sin2θW at low energy. / PHD
5

A 3% Measurement of the Beam Normal Single Spin Asymmetry in Forward Angle Elastic Electron-Proton Scattering using the Q<sub>weak</sub> Setup

Waidyawansa, D. Buddhini P. 26 September 2013 (has links)
No description available.
6

A Measurement of the Weak Charge of the Proton through Parity Violating Electron Scattering using the Qweak Apparatus: A 21% Result

Beminiwattha, Rakitha S. 24 September 2013 (has links)
No description available.

Page generated in 0.0379 seconds