Spelling suggestions: "subject:"récupérateur d'énergie"" "subject:"récupérations d'énergie""
1 |
Network survival with energy harvesting : secure cooperation and device assisted networking / La pérennité du réseau avec la récupération d’énergie : coopération sécurisée entre terminaux et mise en réseau sécuriséeConceicao, Filipe 29 November 2019 (has links)
La technologie de réseau cellulaire de 5ème génération (5G) sera le réseau supportant l'Internet des objets (IoT). Elle a introduit une fonctionnalité majeure, communications appareil-à-appareil (D2D), que permettent communications sans fil à consommation d'énergie restreinte en interagissant à proximité et à puissance d'émission plus faible. La coopération entre appareils suscit donc un intérêt considérable pour l'énergie, et peut être utilisé en conjonction avec la récupération d'énergie pour prolonger la durée de vie des appareils. Les programmes de coopération renforcent la mise en réseau d'un appareil à l'autre, ce qui accroît la nécessité d'exécuter des mécanismes de sécurité pour assurer la protection des données et les relations de confiance entre les nœuds du réseau.Ces mécanismes sont fondamentaux pour la protection contre les attaques malveillantes mais elles représentent aussi une importante consommation d'énergie, souvent négligée en raison de l'importance de la protection des données. L'établissement d'un canal securisé peut être coûteux en termes d'utilisation du CPU, la mémoire et la consommation d'énergie, surtout si les appareils sont limités en ressources. La confidentialité et l’intégrité des données ont un faible coût énergétique, mais sont utilisées en permanence. Il est donc nécessaire de quantifier la consommation d'énergie engendrée par la sécurité d'un appareil. Un modèle énergétique basé sur la sécurité est proposé pour répondre à cet objectif.Dans les réseaux composés d'équipements d'utilisateurs (UE), la mobilité est une caractéristique clé. Elle peut agir sur la connexion à proximité d'objets IoT, étendant la couverture 5G vers l'IoT via les UEs. Une solution d'authentification légère est présentée qui permet par l'authentification directe et des communications UE-IoT, d'étendre la couverture et réaliser des économies d'énergie potentielles importantes. Cette approche peut être particulièrement utile en cas de catastrophe où l'infrastructure réseau peut ne pas être disponible.La condentialité et l'authentification des données sont une source de consommation d'énergie importante. Les appareils équipés avec équipements de collecte d'énergie (EH) peuvent avoir un excédent ou un déficit d'énergie. La sécurité appliquée peut donc être ajustée en fonction de l'énergie disponible d'un appareil, en introduisant l'établissement de canal sécurisé qui tient compte de la consommation d'énergie. Après avoir étudié en profondeur les normes 5G, il a été constaté que les réseaux d'UE D2D utilisant ce type de norme dépenseraient une quantité importante d'énergie et seraient généralement moins sûr. Un mécanisme léger de recléage est donc proposé pour réduire les coûts liés cette adaptation. Pour compléter le concept de canal sécurisé prenant en compte l'énergie et le mécanisme de recléage, une méthode de bootstrapping des paramètres de sécurité est également présentée. Le méthode désigne le cœur du réseau (CN) comme responsable de la politique de sécurité, rend l'ensemble du réseau plus sûr et aide à prévenir les pannes de communication. L'adaptation susvisé requiert l'étude du compromis entre l’énergie et sécurité. À cette fin, un processus décisionnel de Markov (MDP) modélisant un canal de communication est présenté lorsqu'un agent choisit les éléments de sécurité à appliquer aux paquets transmis. Ce problème d'optimisation du contrôle stochastique est résolu par plusieurs algorithmes de programmation dynamique et d’apprentissage par le renforcement (RL). Les résultats montrent que l'adaptation susvisé peut prolonger de manière significative la durée de vie de l'équipement et de la batterie, et améliore la fiabilité des données tout en offrant des fonctions de sécurité. Une étude comparative est présentée pour les différents algorithmes RL. Puis une approche d'apprentissage Q-profond (DQL) est proposé que améliore la vitesse d'apprentissage de l'agent et la fiabilité des données. / The 5th Generation Cellular Network Technology (5G) will be the network supporting the Internet of Things (IoT) and it introduced a major feature, Device-to-Device (D2D) communications. D2D allows energy-constrained wireless devices to save energy by interacting in proximity at a lower transmission power. Cooperation and device-assisted networking therefore raise signicant interest with respect to energy saving, and can be used in conjunction with energy harvesting to prolong the lifetime of battery-powered devices. However, cooperation schemes increase networking between devices, increasing the need for security mechanisms to be executed to assure data protection and trust relations between network nodes. This leads to the use of cryptographic primitives and security mechanisms with a much higher frequency.Security mechanisms are fundamental for protection against malicious actions but they also represent an important source of energy consumption, often neglected due to the importance of data protection. Authentication procedures for secure channel establishment can be computationally and energetically expensive, especially if the devices are resource constrained. Security features such as condentiality and data authentication have a low energetic cost but are used constantly in a device engaged in data exchanges. It is therefore necessary to properly quantify the energy consumption due to security in a device. A security based energy model is proposed to achieve this goal.In User Equipment (UE) D2D networks, mobility is a key characteristic. It can be explored for connecting directly in proximity with IoT objects. A lightweight authentication solution is presented that allows direct UE-IoT communications, extending coverage and potentially saving signicant energy amounts. This approach can be particularly useful in Public Protection and Disaster Relief (PPDR) scenarios where the network infrastructure may not be available.Security features such as condentiality or data authentication are a significant source of consumption. Devices equipped with Energy Harvesting (EH) hardware can have a surplus or a deficit of energy. The applied security can therefore be adjusted to the available energy of a device, introducing an energy aware secure channel. After in depth analysis of 5G standards, it was found that D2D UE networks using this type of channel would spend a signicant amount of energy and be generally less secure. A lightweight rekeying mechanism is therefore proposed to reduce the security overhead of adapting security to energy. To complete the proposed rekeying mechanism, a security parameter bootstrapping method is also presented. The method denes the Core Network (CN) as the security policy maker, makes the overall network more secure and helps preventing communication outages.Adapting security features to energy levels raises the need for the study of the energy/security tradeoff. To this goal, an Markov Decision Process (MDP) modeling a communication channel is presented where an agent chooses the security features to apply to transmitted packets. This stochastic control optimization problem is solved via several dynamic programming and Reinforcement Learning (RL) algorithms. Results show that adapting security features to the available energy can signicantly prolong battery lifetime, improve data reliability while still providing security features. A comparative study is also presented for the different RL learning algorithms. Then a Deep Q-Learning (DQL) approach is presented and tested to improve the learning speed of the agent. Results confirm the faster learning speed. The approach is then tested under difficult EH hardware stability. Results show robust learning properties and excellent security decision making from the agent with a direct impact on data reliability. Finally, a memory footprint comparison is made to demonstrate the feasibility of the presented system even on resource constrained devices.
|
2 |
PVDF polymères piézoélectriques : caractérisation et application pour la récupération d’énergie thermique / PVDF piezoelectric polymers : characterization and application to thermal energy harvestingGusarov, Boris 12 November 2015 (has links)
Les travaux de cette thèse portent sur la caractérisation du polymères piézoélectriques de PVDF et celles de ses composites avec un alliage à mémoire de forme, pour des applications de récupération l'énergie thermique. Tout d'abord, une discussion est donnée sur les avancées actuelles des technologies de récupération d'énergie ainsi que leurs intérêts économiques. Des valeurs typiques de l'énergie pouvant être générée sont estimées, ainsi que des énergies nécessaires pour certaines applications.Une attention particulière est accordée aux principes de fonctionnement des matériaux pyroélectriques et piézoélectriques. Le PVDF et l'alliage à mémoire de forme NiTiCu sont également introduits.Des techniques de caractérisation adaptées sont introduites pour par voie direct caractériser le PVDF en tant que générateur de charges électriques, et son aptitude à la récolte de l'énergie thermique. Puisque le PVDF est un matériau très souple, la flexion à quatre points, la flexion sur tube, et la machine de traction sont utilisés pour étudier sa réponse piézoélectriques directe en mode quasi-statique, ainsi que les changements de propriétés piézoélectriques sous contrainte. Des mesures d'auto-décharge sous différents champs électriques appliqués, températures et contraintes sont effectuées pour étudier la stabilité du matériau.Un concept de récupération d'énergie utilisant des composites de matériaux fonctionnels de familles différentes est introduit. Ici, le couplage entre un matériau piézo-/pyroélectrique et un alliage à mémoire de forme est proposé. Le voltage pyroélectrique simple est combiné avec un voltage piézoélectrique induit par la transformation de phase de l'alliage à mémoire de forme, pour augmenter l'énergie totale générée par le système en chauffant. Une preuve de concept est présentée d'abord pour un matériau semi-flexible basé sur une céramique PZT, et ensuite pour le PVDF qui est entièrement flexible.Enfin, un circuit de gestion d'énergie a été conçu et intégré au récupérateur d'énergie en PVDF. Les hauts pics de tension générés lors du chauffage or refroidissement sont abaissés par un convertisseur de type buck à deux étages jusqu'au une tension de sortie utile stable. L'énergie de sortie est utilisée pour alimenter une carte d'émission sans fil. Ainsi, une chaîne complète de génération d'énergie, exploitant des variations de température et allant jusqu'au l'émission de données représentatives de l'événement thermique survenu est présentée.Les résultats de ces travaux concernent un large spectre d'applications potentiels, particulièrement les capteurs autonomes sans fil, et des objets de l'Internet of Things, avec une flexibilité mécanique élevée, une épaisseur réduite et de faible coût de maintenance. / This work deals with the characterization of piezoelectric polymers PVDF and its composites with shape memory alloys, for thermal energy harvesting applications. First, we discuss current advancements on energy harvesting technologies as well as their economical interests. Typical values of energy that can be generated are given together with energies typically needed for applications.Particular attention is given to the functioning principles of pyroelectric and piezoelectric materials. PVDF and shape memory alloy NiTiCu are also introduced.Custom characterization techniques are introduced to characterize PVDF piezoelectric properties relevant to generator applications and to evaluate its suitability for thermal energy harvesting. Since PVDF is a very flexible material, four-point bending, tube bending and a tensile machine experiments are used to study its piezoelectric response in quasi-static mode, as well as changes in piezoelectric properties with increased strain. Self-discharge measurements under various applied electric fields, temperatures and strains are performed to study the stability of material.A concept of composite energy harvesting, utilizing two materials of different families, is introduced. Here, we propose the coupling of piezo-/pyroelectric material and shape memory alloy. The pure pyroelectric voltage is combined with generated piezoelectric voltage, induced by shape memory alloy transformation, to increase the total energy generated by the system during heating. The proof of concept is shown first for ceramic PZT-based semi-flexible material and then for fully flexible PVDF.Finally, a power management circuit was designed and integrated with the PVDF energy harvester. High generated voltage peaks at heating are lowered by a two-step buck converter to a useful stable output voltage. Output energy are used to power a wireless emission card. Thus, a complete power generation chain from temperature variations to data emission is presented.The results of this work concern a wide range of applications, especially modern autonomous wireless sensors and Internet of Things objects, with low profile, high mechanical flexibility and low maintenance costs.
|
Page generated in 0.0582 seconds