• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4
  • Tagged with
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Réseaux d'Automates Stochastiques : Analyse transitoire en temps continu et algèbre tensorielle pour une sémantique en temps discret

Brenner, Leonardo 16 September 2009 (has links) (PDF)
Cette thèse présente des méthodes et des algorithmes pour l'évaluation de performance de modèles avec très grands espace d'états décrits par des formalismes de haut niveau. Parmi les différents formalismes couramment utilisés, on se place dans le cadre des Réseaux d'Automates Stochastiques (SAN). Le formalisme SAN se caractérise par la représentation de très grands systèmes par la composition de sous-systèmes (automates), où ces automates interagissent entre eux par des événements synchronisants ou des taux et des probabilités fonctionnels. <br /><br />La première partie de cette thèse s'intéresse au calcul des indices de performances transitoires pour des grands modèles. Lorsqu'on calcule des indices de performances transitoires, tel que la disponibilité ponctuelle, la méthode d'uniformisation est la plus souvent utilisée. Cependant le nombre d'itérations vecteur-matrice peut être très grand ce qui devient critique pour de très grands modèles. Des méthodes de détection du régime stationnaire peuvent réduire le coût de calcul en arrêtant les itérations lorsque le régime stationnaire est atteint. Dans cette thèse, nous proposons une adaptation et une comparaison de différentes méthodes de détection du régime stationnaire lorsque la matrice est stockée sous un format tensoriel. Les méthodes sont comparées selon deux critères : nombre d'itérations et précision des résultats.<br /><br />Dans la deuxième partie, nous présentons le formalisme SAN à temps discret. La définition formelle du formalisme SAN présentée dans cette thèse nous permet de définir la sémantique des modèles en temps discret que nous souhaitons exploiter. Nous définissons une nouvelle algèbre tensorielle (appelée Algèbre Tensorielle compleXe - ATX) capable d'exprimer cette sémantique. Pour cela, trois opérateurs sont définis afin de décrire différents comportement d'un système, tels que la simultanéité, la concurrence et le choix. Enfin, le principal apport de cette thèse réside dans la définition d'une formule tensorielle (appelée Descripteur discret) qui utilise cette nouvelle algèbre pour représenter un modèle SAN à temps discret de façon compacte. Nous montrons que ce descripteur discret permet aisément de générer la chaîne de Markov représentée par le modèle SAN.
2

Méthodes numériques pour la solution de systèmes Markoviens à grand espace d'états

Fernandes, Paulo 24 February 1998 (has links) (PDF)
Cette thèse propose des techniques numériques visant à optimiser les méthodes itératives d'évaluation de performances de modèles Markoviens. Ces techniques s'appliquent à des modèles où la matrice de transition de la chaîne de Markov associée est stockée sous un format tensoriel. Particulièrement, le formalisme des réseaux d'automates stochastiques est employé pour la description des modèles. L'évaluation de performances cherchée est la détermination de l'état stationnaire de la chaîne de Markov (\emph(résolution)). De ce fait, les propriétés de l'algèbre tensorielle généralisée sont proposées et démontrées de façon à établir la base nécessaire aux algorithmes de résolution introduits. Le principal apport de cette thèse réside dans l'efficacité des ces algorithmes, qui est obtenue avec l'accélération des méthodes itératives. Ceci est fait à deux niveaux: la réduction du coût de chaque itération; et la réduction du nombre d'itérations nécessaire à la convergence. La multiplication d'un vecteur par une matrice sous format tensoriel (produit vecteur-descripteur) est l'opération de base des itérations. L'efficacité de cette opération est le premier objectif à atteindre. Le deuxième objectif est l'implémentation des méthodes de la puissance, d'Arnoldi et GMRES dans ses versions standards et pré-conditionnées de façon a minimiser le nombre d'itérations sans trop augmenter le coût de chaque itération. La totalité des concepts introduits est alors utilisée dans le logiciel PEPS 2.0. Plusieurs exemples pratiques de modèles en réseaux d'automates stochastiques ont été mesurés sur PEPS 2.0 pour illustrer les résultats de cette thèse.
3

Réseaux d'Automates Stochastiques : Génération de l'espace d'états atteignables et Multiplication vecteur-descripteur pour une sémantique en temps discret

Correa De Sales, Afonso Henrique 10 September 2009 (has links) (PDF)
Cette thèse présente des méthodes et des algorithmes pour l'évaluation de performance de systèmes à grand espace d'états décrits par des formalismes de haut niveau. Parmi les différents formalismes de haut niveau normalement utilisés, nous nous sommes intéressés au formalisme des Réseaux d'Automates Stochastiques (SAN). Le formalisme SAN se caractérise par la modélisation de systèmes complexes, où un système est représenté par la composition de sous-systèmes (automates) qui interagissent entre eux. Cette interaction se réalise par l'occurrence des événements synchronisants ou des taux fonctionnels. Lorsqu'on calcule l'espace d'états atteignables de systèmes complexes, le principal problème qui surgit est l'explosion combinatoire de l'espace d'états du modèle. Dans la première partie de cette thèse, nous proposons des méthodes pour la génération de l'espace d'états atteignables de modèles compositionnels qui utilisent des taux fonctionnels. Nous utilisons les Diagrammes de Décision Multi-valués (MDD) pour représenter et manipuler les espaces d'états et le formalisme SAN pour la modélisation de systèmes. Un MDD est une structure de donnée arborescente qui permet de représenter et de manipuler de façon performante un très grand espace d'états. L'avancée par rapport à l'état de l'art a été de proposer de méthodes qui prennent en compte ces fonctions qui expriment des relations entre les composants des modèles. Des études d'exemples sont présentées afin d'illustrer les apports de ces méthodes. Dans la deuxième partie de cette thèse, nous nous sommes intéressés à la résolution d'un modèle SAN à temps discret dont la matrice de transition est représentée par une formule tensorielle (appelée descripteur discret). A cet effet, nous présentons l'Algèbre Tensorielle compleXe (ATX) adaptée à la composition parallèle des SAN à temps discret pour la représentation du descripteur et nous démontrons des propriétés qui servent de base aux méthodes itératives pour la résolution de la chaîne de Markov associée au modèle SAN. Un des avantages de représenter un modèle SAN par un descripteur est la façon compacte par laquelle on peut représenter les transitions du modèle: on remplace une description dans un espace produit par un unique produit tensoriel portant sur des facteurs qui décrivent ce qui se passe sur une seule dimension (une composante du modèle SAN). Afin de profiter de cette représentation, nous présentons une méthode de multiplication d'un vecteur de probabilité par un descripteur discret adaptée à cette algèbre. Cette méthode vise à exploiter des propriétés du produit tensoriel complexe de façon à ce que la multiplication par un opérateur sur l'espace produit soit remplacée par une suite d'opérations qui manipulent des données de la taille d'une composante (et pour toutes les composantes).
4

Méthodes et algorithmes pour l'évaluation des performances des systèmes

Benoit, Anne 18 June 2003 (has links) (PDF)
Les chaînes de Markov facilitent l'analyse des performances des systèmes dynamiques dans de nombreux domaines d'application. Cette thèse présente le formalisme des réseaux d'automates stochastiques pour représenter des systèmes markoviens. Le principal objectif des travaux consiste à améliorer les méthodes existantes pour évaluer les performances de systèmes informatiques à grand espace d'états. Pour cela, nous introduisons le concept de réseaux d'automates stochastiques avec réplication, ainsi que des techniques pour simplifier le modèle étudié en réduisant la taille de l'espace d'états. Pour rechercher des indices de performances, on propose une amélioration de l'opération de base en tenant compte du fait que dans de nombreux modèles, la proportion d'états accessibles est faible. Les méthodes et algorithmes développés au cours de la thèse ont été implémentés dans le logiciel PEPS 2003. Des exemples numériques sont présentés pour illustrer les apports de cette thèse.

Page generated in 0.1065 seconds