• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • Tagged with
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Rekernelisation Algorithms in Hybrid Phylogenies

Collins, Joshua Stewart January 2009 (has links)
It has become well known that an evolutionary tree is inadequate to represent fully the history of life. Two possible ways of dealing with this are the rooted subtree prune and regraft distance between a pair of trees, which measures how different they are, and the slightly more biologically sound hybridisation number of a set of trees that attempts to determine the minimum number of hybrid events that must have occurred for a given set of evolutionary trees. When characterised via agreement forests both problems are, although NP hard, fixed parameter tractable---meaning the problem can be converted to a similar problem with a smaller input size. This thesis investigates ways of improving existing algorithms for calculating the minimum rooted subtree prune and regraft distance and hybridisation number for a pair or, in the latter case, set of trees. In both cases a technique is used that allows the problem to be rekernelised during the run of the program. Another, less effective method, is also looked at which finds the rooted subtree prune and regraft distance or hybridisation number solely on what cannot be contained within any agreement forest. Additionally the characterisation of the minimum rooted subtree prune and regraft distance via maximum agreement forests is extended to non-binary trees and the hybridisation number of a set of phylogenetic trees is extended to unrooted trees.
2

Evolution of Tandemly Repeated Sequences

Snook, Michael James January 2009 (has links)
Despite being found in all presently sequenced genomes, the evolution of tandemly repeated sequences has only just begun to be understood. We can represent the duplication history of tandemly repeated sequences with duplication trees. Most phylogenetic techniques need to be modified to be used on duplication trees. Due to gene loss, it is not always possible to reconstruct the duplication history of a tandemly repeated sequence. This thesis addresses this problem by providing a polynomial-time locally optimal algorithm to reconstruct the duplication history of a tandemly repeated sequence in the presence of gene loss. Supertree methods cannot be directly applied to duplication trees. A polynomial-time algorithm that takes a forest of ordered phylogenies and looks for a super duplication tree is presented. If such a super duplication tree is found then the algorithm constructs the super duplication tree. However, the algorithm does not always find a super duplication tree when one exists. The SPR topological rearrangement in its current form cannot be used on duplication trees. The necessary modifications are made to an agreement forest so that the SPR operation can be used on duplication trees. This operation is called the duplication rooted subtree prune and regraft operation (DrSPR). The size of the DrSPR neighbourhood is calculated for simple duplication trees and the tree shapes that maximize and minimize this are given.
3

Rekernelisation Algorithms in Hybrid Phylogenies

Collins, Joshua Stewart January 2009 (has links)
It has become well known that an evolutionary tree is inadequate to represent fully the history of life. Two possible ways of dealing with this are the rooted subtree prune and regraft distance between a pair of trees, which measures how different they are, and the slightly more biologically sound hybridisation number of a set of trees that attempts to determine the minimum number of hybrid events that must have occurred for a given set of evolutionary trees. When characterised via agreement forests both problems are, although NP hard, fixed parameter tractable---meaning the problem can be converted to a similar problem with a smaller input size. This thesis investigates ways of improving existing algorithms for calculating the minimum rooted subtree prune and regraft distance and hybridisation number for a pair or, in the latter case, set of trees. In both cases a technique is used that allows the problem to be rekernelised during the run of the program. Another, less effective method, is also looked at which finds the rooted subtree prune and regraft distance or hybridisation number solely on what cannot be contained within any agreement forest. Additionally the characterisation of the minimum rooted subtree prune and regraft distance via maximum agreement forests is extended to non-binary trees and the hybridisation number of a set of phylogenetic trees is extended to unrooted trees.

Page generated in 0.0276 seconds