• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • No language data
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

USING THE FROG EPIDERMIS TO UNCOVER DESMOSOME FUNCTION AND REGULATION IN THE DEVELOPING EMBRYO

Bharathan, Navaneetha Krishnan 01 January 2018 (has links)
The desmosome is one of the major cell adhesion junctions found in the epithelia, heart, and hair follicle. Described as a “rivet” that hold cells together, it provides these tissues with the integrity to withstand the tremendous forces they face in everyday life. Defects in this junction can lead to devastating diseases where patients are susceptible to skin infections and cardiovascular defects. Limited treatments exist for diseases of the desmosome, and strategies do not target all symptoms. Therefore, delineating the function and regulation of desmosomes is of paramount importance for the development of prevention and treatment strategies. The Xenopus laevis has been utilized for the study of embryonic development and tissue movements. This study takes advantage of the frog model to study a key desmosomal protein, desmoplakin (Dsp), in the epidermal development of the embryo. First, Xenopus embryonic epidermis has junctional desmosomes as early as the blastula stages. Desmosomes numbers per junction increase as the embryo develops. Dsp is present in many epidermally-derived structures in the embryo at varying levels. Xenopus embryos deficient in desmoplakin have phenotypic defects in epidermal structures and the heart, mimicking mammalian models. Embryos with reduced Dsp exhibit an increased susceptibility to epidermal damage under applied mechanical forces. Assays also reveal a potential role for desmosomes in radial intercalation, a process through which cells move from the inner to the outer epidermal layers. Embryos with reduced Dsp exhibit a slight reduction in intercalation and defects in intercalating cell types, including multiciliated cells and small secretory cells. Finally, c-Jun N-terminal kinase (JNK) may have a potential role in the regulation of desmosome assembly and adhesion. Embryos with deficient Dsp display a partial recovery of mechanical integrity when treated with a JNK inhibitor.

Page generated in 0.1312 seconds