• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4
  • 1
  • Tagged with
  • 5
  • 5
  • 4
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Using radial k-space sampling and temporal filters in MRI to improve temporal resolution

Brynolfsson, Patrik January 2010 (has links)
In this master thesis methods for increasing temporal resolution when reconstructing radially sampled MRI data have been developed and evaluated. This has been done in two steps; first the order in which data is sampled in k-space has been optimized, and second; temporal filters have been developed in order to utilize the high sampling density in central regions of k-space as a result of the polar sampling geometry to increase temporal resolution while maintaining image quality.By properly designing the temporal filters the temporal resolution is increased by a factor 3–20 depending on other variables such as imageresolution and the size of the time varying areas in the image. The results are obtained from simulated raw data and subsequent reconstruction. The next step should be to acquire and reconstruct raw data to confirm the results. / This Master thesis work was performed at Dept. Radiation Physis, Linköping University, but examined at Dept. Radiation Physics, Umeå University
2

Using radial k-space sampling and temporal filters in MRI to improve temporal resolution

Brynolfsson, Patrik January 2010 (has links)
In this master thesis methods for increasing temporal resolution when reconstructing radially sampled MRI data have been developed and evaluated. This has been done in two steps; first the order in which data is sampled in k-space has been optimized, and second; temporal filters have been developed in order to utilize the high sampling density in central regions of k-space as a result of the polar sampling geometry to increase temporal resolution while maintaining image quality.By properly designing the temporal filters the temporal resolution is increased by a factor 3–20 depending on other variables such as imageresolution and the size of the time varying areas in the image. The results are obtained from simulated raw data and subsequent reconstruction. The next step should be to acquire and reconstruct raw data to confirm the results. / This Master thesis work were performed at Dept. Radiation Physis, Linköping University, but examined at Dept. Radiation Physics, Umeå University
3

In-Plane Motion Correction in Reconstruction of non-Cartesian 3D-functional MRI / Korrigering av 2D-rörelser vid rekonstruktion av icke-kartesisk 3D funktionell MRI

Karlsson, Anette January 2011 (has links)
When patients move during an MRI examination, severe artifacts arise in the reconstructed image and motion correction is therefore often desired. An in-plane motion correction algorithm suitable for PRESTO-CAN, a new 3D functional MRI method where sampling of k-space is radial in kx-direction and kz-direction and Cartesian in ky-direction, was implemented in this thesis work. Rotation and translation movements can be estimated and corrected for sepa- rately since the magnitude of the data is only affected by the rotation. The data were sampled in a radial pattern and the rotation was estimated by finding the translation in angular direction using circular correlation. Correlation was also used when finding the translation in x-direction and z-direction. The motion correction algorithm was evaluated on computer simulated data, the motion was detected and corrected for, and this resulted in images with greatly reduced artifacts due to patient movements. / När patienter rör sig under en MRI-undersökning uppstår artefakter i den rekonstruerande bilden och därför är det önskvärt med rörelsekorrigering. En 2D- rörelsekorrigeringsalgoritm som är anpassad för PRESTO-CAN har tagits fram. PRESTO-CAN är en ny fMRI-metod för 3D där samplingen av k-rummet är radiell i (kx,kz)-planet och kartesisk i ky-riktningen. Rotations- och translationsrörelser kan estimeras separat då magnituden av signalen bara påverkas av rotationsrörelser. Eftersom data är samplat radiellt kan rotationen estimeras genom att hitta translationen i vinkelled med hjälp av cirkulär korrelation. Korrelation används även för att hitta translationen i i x- och z-riktningen. Test på simulerat data visar att rörelsekorrigeringsalgoritmen både detekterar och korrigerar för rörelser vilket leder till bilder med mycket mindre rörelseartefakter.
4

Systém pro optické měření / Optical measurement system

Opravil, Jan January 2012 (has links)
This diploma thesis deals with the creation and testing of optical measurement system. There are basic parts of computer vision. Some ways of image preprocessing and templates matching are discussed. Everything is directed to a particular practical task. Selected methods for templates matching are the Correlation Method, the Classical and Hybrid Hausdorff Distance, Radial and Circular Sampling Space. These methods are programmed in C++ and they are compared with function for searching templates from specific library.
5

Correction of Radial Sampling Trajectories by Modeling Nominal Gradient Waveforms and Convolving with Gradient Impulse Response Function / Korrektion av radiella samplingstrajektorier genom modellering av nominella gradientvågformer och faltning med gradientimpulsresponsfunktion

Kim, Max, Belbaisi, Adham January 2019 (has links)
There are several reasons for using non-Cartesian k-space sampling methods in Magnetic Resonance Imaging (MRI). Such a method is radial sampling, which includes the advantage of continuous coverage of the k-space center which results in higher robustness to motion. On the other hand, radial imaging does have some limitations that must be considered. The method is more sensitive to gradient imperfections, such as eddy currents and gradient delays, resulting in inconsistencies between the nominal and actual gradient waveforms. This leads to distortions in the sampling trajectory, also called trajectory errors, yielding reconstructed images with artifacts caused by the gradient imperfections. The aim of this project was therefore to implement a method that takes these errors into account and perform a correction of the trajectory errors to yield images with reduced artifacts. Various methods have been proposed for correction of the gradient errors, some more effective than others. The method implemented in this project was based on the gradient impulse response function (GIRF) which characterizes the gradient system responses. When GIRF was acquired, the actual gradient waveforms played-out during the imaging measurement could be predicted by first modeling the nominal gradient waveforms and then performing a convolution with the corresponding GIRF for each gradient axis. The imaging experiments involved measurements on two different resolution phantoms and in-vivo measurements to note possible differences in correction performance. The used pulse sequences for imaging were FLASH and bSSFP. The results showed that the applied method using GIRF did reduce the artifacts caused by gradient imperfections in the reconstructed images taken with the FLASH sequence. On the other hand, the results for the bSSFP sequence were not as successful due to incomplete modeling of the gradient waveforms. The conclusion to be drawn is that the GIRF-correction does adequately compensate for the trajectory errors when using a radial sampling trajectory for the FLASH sequence and hence yield images with almost eliminated artifacts. A suggestion for future work would be to further investigate the bSSFP sequence modeling to obtain better bSSFP-images. / Det finns flera anledningar till att använda icke-Kartesiska k-space samplingsmetoder i magnetisk resonanstomografi. En sådan metod är radiell sampling, som har fördelen att kontinuerligt samla in mätdata från mittpunkten av k-space, vilket resulterar i lägre rörelsekänslighet under bildtagningstillfället. Radiell sampling har dock begränsningar som måste tas i beaktande, som gradient imperfektioner och gradientfördröjningar. Dessa leder till förvrängningar i samplingspositioneringen i k-space, även känt som trajektoriefel, vilket ger upphov till artefakter vid bildrekonstruktion. Syftet med projektet är att korrigera för dessa trajektoriefel så att den rekonstruerade bilden innehåller färre artefakter. Olika metoder har föreslagits för korrektion av gradientfel. Metoden som användes i detta projekt baseras på gradient impulsresponsfunktionen (GIRF), som karaktäriserar gradient systemet. För att estimera de verkliga samplingspositionerna i k-space beräknades de förvrängda gradientvågformerna efter varje mätning. Detta gjordes genom att först modellera de nominella gradientvågformerna och därefter utföra en faltning med GIRF. De utförda experimenten under projektets gång bestod av bildtagning av två fantomer och ett antal in-vivo mätningar för att identifiera eventuella skillnader i de rekonstruerade bilderna. Pulssekvenserna som användes under projektet var FLASH och bSSFP. Resultaten visade att GIRF-korrektionen reducerade artefakter orsakade av gradient imperfektioner i de rekonstruerade bilderna tagna med FLASH-sekvensen. Erhållna resultat med bSSFP-sekvensen var å andra sidan inte lika lyckade på grund av inkomplett modellering av gradientvågformerna. Slutsatsen som kan dras är att GIRF-korrektionen kompenserar för trajektoriefel i radiell sampling för FLASH-sekvensen och ger rekonstruerade bilder där artefakterna nästan eliminerats. Ett förslag för framtida arbeten är att vidare undersöka modelleringen av bSSFP-sekvensen för att erhålla bättre bilder.

Page generated in 0.0674 seconds