• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Radiative feedback from massive stars in low-metallicity environments / 低金属度環境における大質量星輻射の影響

Fukushima, Hajime 25 March 2019 (has links)
京都大学 / 0048 / 新制・課程博士 / 博士(理学) / 甲第21565号 / 理博第4472号 / 新制||理||1642(附属図書館) / 京都大学大学院理学研究科物理学・宇宙物理学専攻 / (主査)准教授 細川 隆史, 教授 田中 貴浩, 教授 井岡 邦仁 / 学位規則第4条第1項該当 / Doctor of Science / Kyoto University / DGAM
2

Simulating Cluster Formation and Radiative Feedback in Molecular Clouds

Howard, Corey S. 10 1900 (has links)
<p>The formation of star clusters occurs in a complex environment and involve a large number of physical processes. One of the most important processes to consider is radiative feedback. The radiation released by forming stars heats the surrounding gas and suppresses the fragmentation of low mass objects. Ionizing radiation can also drive large scale outflows and disperse the surrounding gas. Owing to all this complexity, the use of numerical simulations to study cluster formation in molecular clouds has become commonplace. In order to study the effects of radiative feedback on cluster formation over larger spatial scales than previous studies, we present hydrodynamical simulations using the AMR code FLASH which make use of cluster particles. Unlike previous studies, these particles represent an entire star cluster rather than individual stars. We present a subgrid model for representing the radiative output of a star cluster which involves randomly sampling an IMF over time to populate the cluster. We show that our model is capable of reproducing the properties of observed clusters. The model was then incorporated into FLASH to examine the effects of radiative feedback on cluster formation in full hydrodynamical simulations. We find that the inclusion of radiative transfer can drive large scale outflows and decreases the overall star formation efficiency by a factor of 2. The inclusion of radiative feedback also increases the degree of subclustering. The use of cluster particles in hydrodynamical simulations represents a promising method for future studies of cluster formation and the large scale effects of radiative feedback.</p> / Master of Science (MSc)
3

Radiation hydrodynamic models and simulated observations of radiative feedback in star forming regions

Haworth, Thomas James January 2013 (has links)
This thesis details the development of the radiation transport code torus for radiation hydrodynamic applications and its subsequent use in investigating problems regarding radiative feedback. The code couples Monte Carlo photoionization with grid-based hydrodynamics and has the advantage that all of the features available to a dedicated radiation transport code are at its disposal in RHD applications. I discuss the development of the code, including the hydrodynamics scheme, the adaptive mesh refinement (AMR) framework and the coupling of radiation transport with hydrodynamics. Extensive testing of the resulting code is also presented. The main application involves the study of radiatively driven implosion (RDI), a mechanism where the expanding ionized region about a massive star impacts nearby clumps, potentially triggering star formation. Firstly I investigate the way in which the radiation field is treated, isolating the relative impacts of polychromatic and diffuse field radiation on the evolution of radiation hydrodynamic RDI models. I also produce synthetic SEDs, radio, Hα and forbidden line images of the bright rimmed clouds (BRCs) resulting from the RDI models, on which I perform standard diagnostics that are used by observers to obtain the cloud conditions. I test the accuracy of the diagnostics and show that considering the pressure difference between the neutral cloud and surrounding ionized layer can be used to infer whether or not RDI is occurring. Finally I use more synthetic observations to investigate the accuracy of molecular line diagnostics and the nature of line profiles of BRCs. I show that the previously unexplained lack of dominant blue-asymmetry (a blue-asymmetry is the expected signature of a collapsing cloud) in the line profiles of BRCs can be explained by the shell of material, swept up by the expanding ionized region, that drives into the cloud. The work in this thesis combines to help resolve the difficulties in understanding radiative feedback, which is a non–linear process that happens on small astrophysical timescales, by improving numerical models and the way in which they are compared with observations.

Page generated in 0.0891 seconds