• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • No language data
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

ELUCIDATING THE CHARGE TRANSPORT OF A RADICAL SYSTEM FROM A COMBINED EXPERIMENTAL AND COMPUTATIONAL APPROACH

Ying Tan (15339337) 27 April 2023 (has links)
<p>Radical polymers bearing open-shell moieties at their pendant sites offer potential advantages in processing, stability, and optoelectronic properties compared to conventional doped conjugated polymers. The rapid development of radical-containing polymers has occurred across various applications in energy storage devices and electronic systems. However, significant gaps still exist in understanding the key structure-property-function relationships governing charge transport phenomena in these materials. Most reported radical conductors primarily rely on (2,2,6,6-tetramethylpiperidin-1-yl)oxyl (TEMPO) radicals, which raises fundamental questions about the ultimate limits of charge transport capabilities and the impact of radical chemistry choice on material deficiencies. Moreover, an understanding gap persists when it comes to connecting the computable electronic features of individual units and the charge transport behavior of these materials in condensed phases. This dissertation seeks to address these gaps by developing a molecular understanding of charge transport in radical-bearing materials through a combined computational and experimental approach.</p> <p><br></p> <p>The initial stage of this dissertation investigated the impact of dimeric orientations and interactions on charge transport by conducting a density functional theory (DFT) study on a diverse set of open-shell chemistries relevant to radical conductors. The results revealed the anomalously high reorganization energies of the TEMPO radical due to strong spin-localization, which may result in inefficient charge transfer. Additionally, a significant mismatch was identified between dimeric conformations favored by intermolecular interactions and those maximizing charge transfer. This study provided new insights into the impact of steric hindrance and spin delocalization on elementary charge transfer steps and suggests opportunities for exploiting directing interactions to enhance charge transport in these materials.</p> <p><br></p> <p>Building upon these findings, we established a direct relationship between the molecular architecture and intrinsic charge transport properties. To accomplish this, single-molecule characterization methods (i.e., break junction techniques) were implemented to study the nanoscale charge transport properties of radical-containing oligomeric nonconjugated molecules. Temperature-dependent measurements and molecular modeling revealed that the presence of radicals improves tunneling at the nanoscale. Integrating open-shell moieties into nonconjugated molecular structures significantly enhances charge transport, thereby characterizing charge transport through radicals at the individual level and opening new avenues for implementing molecular engineering in the field of nanoelectronics.</p> <p><br></p> <p>To further connect the electronic properties of repeat units with the condensed-phase charge transport behavior of radical polymers, a quantum chemical study was carried out to explicitly evaluate the interplay between polymer design, open-shell chemistries, and intramolecular charge transport. After comprehensive conformational sampling of the configurational space of radical polymers, we determined their anticipated intrachain charge transport values by utilizing graph-based transport metrics. We show that charge transport in radical polymers primarily hinges on the choice of radical chemistry, which in turn affects the optimal selection of backbone chemistry and spacer group to ensure proper radical alignment and prevent undesired trap states. These findings highlight the potential for a substantial synthetic exploration in radical polymers for radical conductors.</p> <p><br></p> <p>In summary, this dissertation provides compelling evidence of radical-mediated charge transport and suggests potential design guidelines to enhance the charge transfer behavior of radical-containing polymer materials. Furthermore, these findings inform future research directions in fine-tuning molecular engineering and modular design to enable the development of radical-based materials and their end-use applications in organic electronics.</p>
2

ESTABLISHING THE OPTOELECTRONIC INTERACTIONS BETWEEN CONJUGATED POLYMERS AND ORGANIC RADICALS

Daniel A Wilcox (9116285) 28 July 2020 (has links)
<div> Design rules and application spaces for closed-shell conjugated polymers have been well established in the field of organic electronics, and this has allowed for significant breakthroughs to occur in myriad device platforms [e.g., organic field-effect transistors (OFETs) and organic light-emitting devices (OLEDs)]. Conversely, organic electronic materials that are based on the emerging design motif that includes open-shell stable radicals have not been evaluated in such detail, despite the promise these materials show for charge transfer, light-emission, and spin manipulation platforms. Moreover, recent results have demonstrated that the materials performance of hybrid systems will allow for future applications to harness both of these platform design archetypes to generate composites that combine the performance of current state-of-the-art conjugated polymer systems with the novel functions provided by open-shell species. Thus, establishing the underlying physical phenomena associated with the interactions between both classes of materials is imperative for the effective utilization of these soft materials.</div><div><br></div><div> In the first part of this work, Förster resonance energy transfer (FRET) is demonstrated to be the dominant mechanism by which energy transfer occurs from a common conjugated polymer to various radical species using a combination of experimental and computational approaches. Specifically, this is determined by monitoring the fluorescence quenching of poly(3hexylthiophene) (P3HT) in the presence of three radical species: (1) the galvinoxyl; (2) the 2phenyl-4,4,5,5-tetramethylimidazoline-3-oxide-1-oxyl (PTIO); and (3) the 4-hydroxy-2,2,6,6tetramethylpiperidine-1-oxyl (TEMPO) radicals. Both in solution and in the solid-state, the galvinoxyl and PTIO radicals show quenching on par with that of a common fullerene electronaccepting derivative. Conversely, the TEMPO radical shows minimal quenching at similar concentrations. Using both ultrafast transient absorption spectroscopy and computational studies, FRET is shown to occur at a significantly faster rate than other competing processes. These findings suggest that long-range energy transfer can be accomplished in applications when radicals that can act as FRET acceptors are utilized, forming a new design paradigm for future applications involving both closed- and open-shell soft materials.</div><div><br></div><div> Following this, addition of the galvinoxyl radical to P3HT is shown to alter the thin film transistor response from semiconducting to conducting. This is accompanied by a modest enhancement in electrical conductivity. This interaction is not seen with either the TEMPO or PTIO radicals. While an increase in charge carrier concentration is observed, the interaction is not otherwise consistent with a simple charge-transfer doping mechanism, due to the mismatched reduction and oxidation potentials of the two species. Additionally, no freeze-out of charge carriers is observed at reduced temperatures. It is also not due to parallel conduction through the radical fraction of the bulk composite, as the radical species is non-conductive. Hole mobility is enhanced at lower concentrations of the radical, but it decreases at higher concentrations due to the reduced fraction of conductive material in the polymer bulk. Despite the increase in mobility at lower concentrations, the activation energy for charge transport is increased by the presence of the radical. This suggests that the radical is not improving the charge transport through filling of deep trap states or by reducing the activation energy for the charge transport reaction; however, the galvinoxyl radical is likely filling shallow trap states within the P3HT for the composite thin film.</div><div><br></div><div> Finally, a novel analysis technique for polymer relaxation is investigated through dielectric spectroscopy of model polyalcohols. An understanding of relaxation phenomena and the physics of amorphous solids in general remains one of the grand open challenges in the field of condensed matter physics. This problem is particularly relevant to organic electronics as many organic electronic materials are found in the amorphous state, and their physical relaxation can lead to undesirable effects such as hysteresis and instability. Current procedures describe relaxation phenomena in terms of empirical functions, but the physical insights provided by this representation are limited. The new approach instead represents the dielectric response as a spectrum of Debye processes. Rather than varying the spectral strength at fixed time points as traditional spectral analysis implicitly does, this approach instead varies the characteristic time of each spectral element while the strength remains fixed. This allows the temperature dependence on relaxation time of each spectral element to be determined, and the <i>α</i>- and <i>β</i>-relaxation are interpreted in light of this analysis. </div><div> </div>

Page generated in 0.1072 seconds