• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Effect of Antibiotic Pastes on Chemical Structure and Microhardness of Radicular Dentin

Prather, Blake January 2014 (has links)
Indiana University-Purdue University Indianapolis (IUPUI) / Introduction: Regenerative endodontic therapy in immature teeth with necrotic pulps triggers continued root development, thereby improving the prognosis of these teeth. Disinfection of the canal is accomplished with an intracanal medicament, such as triple antibiotic paste (TAP) composed of metronidazole, ciprofloxacin, and minocycline. A modified triple antibiotic paste (MTAP) that replaces minocycline with clindamycin has recently been suggested to avoid the tooth discoloration and potential demineralization from minocycline. The effect these pastes have on radicular dentin is unknown. Objectives: The aim of this study was to investigate the effects of two intracanal medicaments used during endodontic regeneration, TAP and MTAP, at concentrations of 1 g/mL and 1 mg/mL, on the microhardness and chemical structure of radicular dentin. Materials and Methods: Roots from extracted, unrestored, non-carious human premolar teeth were sectioned. An antibiotic paste (MTAP or TAP) or sterile water (control) was applied to treatment groups and stored for four weeks in 80-percent humidity at 37 °C. The effect of each paste on the microhardness of radicular dentin was measured using a Vickers Microhardness Tester (n = 17) to take three pretreatment and post-treatment measurements at both 500 µm and 1000 µm from the pulp-dentin interface. The chemical structure was assessed from dentin specimens treated with the same medicaments or sterile water for four weeks. After treatment, three measurements were taken on each specimen using Attenuated Total Reflection Fourier Transform Infrared Spectroscopy to measure the phosphate/amide I ratios of dentin (n = 7). Results: The 1 g/mL of TAP or MTAP and the 1 mg/mL methylcellulose-based TAP caused significant reduction in microhardness of roots compared with untreated control roots at 500 µm and 1000 µm from the pulp-dentin interface. Furthermore, the methylcellulose-based 1 mg/mL TAP and MTAP caused significantly less reduction in microhardness compared with 1 g/mL TAP and MTAP. The 1 g/mL of TAP and DAP caused significantly lower phosphate/amide I ratios compared with other groups. Conclusion: The use of methylcellulose based 1 mg/mL of TAP and MTAP may minimize the reduction in microhardness of roots compared with the currently used 1 g/mL concentration of these antibiotics.

Page generated in 0.0881 seconds