• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 3
  • 3
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Synthesis and characterization of hierarchically porous zeolite composites for enhancing mass transfer

Al-Jubouri, Sama January 2016 (has links)
The major concern of this work is the development of hierarchically porous structured zeolite composites for ion-exchange applications by deposition of a thin layer of zeolite on inexpensive porous supports which offers better efficiency in separation processes. The merits of utilization of zeolite composites in industrial applications are generally reducing mass transfer resistance and pressure drop. In addition to this they have advantages in the removal of metal ions from wastewater such as increasing the metals uptake and minimizing the volume of waste disposed especially after vitrification. This thesis presents results from a combination of experimental work and simulation study of experimental data to give isotherm and kinetic models. The experimental work shed light on the preparation of zeolite composites using zeolite X (Si/Al ~ 1.35) and clinoptilolite (Si/Al ~ 4.3), studying the performance of these composites on the removal of the Sr2+ and Mn2+ ions and then stabilization of waste materials resulting from the ion-exchange process. Clinoptilolite was hydrothermally synthesized to show the effect of non-framework cations on the removal process. The porous supports were diatomite which is naturally occurring silica and carbon which is obtained from Iraqi date stones by a thermal treatment conducted at 900°C. Coating the support surface with zeolites crystals was conducted in two different ways. The layer by layer approach, which has not previously been used, was used to prepare monolithic carbon clinoptilolite composite using a combination of sucrose/citric acid and zeolite. The other approach was modifying the support surface by ultrasonication in the presence of nanoparticles suspension prepared using ball mill to create nucleation sites and enhance the crystal attachment during hydrothermal treatment. Characterisation was implemented in each case using XRD, SEM, EDAX, TGA and BET method. Ion-exchange experimental results showed higher ion-exchange capacity obtained when the composites were used in comparison to pure zeolites, when a comparison is based on actual weight of zeolite used for removal of Sr2+ and Mn2+ ions. A study of encapsulation of ions showed that it is feasible to solidify the waste materials by vitrification and/or geopolymerization to eliminate leaching of ions to the environment. The simulation studies showed that the ion-exchange kinetic followed the pseudo second order kinetic model. This fitting indicates that the rate of ion-exchange process is controlled by a chemical reaction related to valence forces. The overall ion-exchange process is controlled by a combination of ion-exchange reaction, film diffusion and intra-particle diffusion. Moreover, the thermodynamic studies which were conducted under different temperatures revealed that the ion-exchange of Sr2+ and Mn2+ ions is practicable, spontaneous and endothermic.
2

Entrapment of mobile radioactive elements with coordination polymers and supported nanoparticles / Non traduit

Massasso, Giovanni 13 October 2014 (has links)
La production d'énergie nucléaire nécessite des systèmes avancés pour améliorer les procédures de stockage et de confinement des déchets radioactifs. Par ailleurs, la capture d'éléments radioactifs mobiles dans les effluents des centrales nucléaires demande une amélioration de la capacité et de la sélectivité. L'iode 129-I est un des produits les plus critiques à confiner et il est produit pendant les procédés de recyclage des déchets nucléaires. Dans ce travail de thèse, la classe de matériaux moléculaires, dénommée structures de type Hofmann, a été étudiée en tant que matériaux massifs et nanoparticules supportées pour la capture sélective de l'iode moléculaire. En premier lieu, les matériaux M'(L)[M''(CN)4] ont été précipités sous la forme de poudres microcristallines. L'insertion d'iode dans le réseau des matériaux massifs a été effectuée par différents protocoles: 1) adsorption d'iode dans des solutions de cyclohexane à température ambiante; 2) adsorption d'iode en phase gazeuse à 80 °C; 3) adsorption de vapeurs d'iode en phase gazeuse à 80 °C et en présence de vapeurs d'eau. Les différents protocoles pour l'insertion d'iode n'ont pas influencé la nature de l'iode confiné. Pour la capture en solution, les structures NiII(pz)[NiII(CN)4], NiII(pz)[PdII(CN)4] et CoII(pz)[NiII(CN)4] ont montré une capacité d'une molécule d'iode par unité de maille. L'iode confiné est physisorbé en tant qu'iode moléculaire en interaction avec le réseau. Les modélisations GCMC ont confirmé la capacité maximale et ils ont indiqué que l'iode interagit avec la pyrazine et avec les cyanures. Sur la base des données expérimentales, la modulation des métaux dans le réseau a montré une légère différence dans la force d'interaction entre l'iode et le réseau et une adaptation de la maille spécifique pour chaque composition. Une complète régénération du réseau a été possible, puisque l'iode était complètement désorbé avant la décomposition du réseau. Pour le réseau NiII(pz)[PtII(CN)4], on a observé un mécanisme différent de capture puisque ce réseau contenant Pt a réagi avec l'iode en donnant le complexe de coordination NiII(pz)[PtII/IV(CN)4].I-. La formation de ce type de complexe était déjà observée dans la littérature par Ohtani et al. lesquels avaient préparé le complexe via une synthèse in-situ. Ensuite, le changement du ligand organique pyrazine avec d'autres ligands plus longs, c'est-à-dire la 4,4'-bipyridine (bpy) ou 4,4'-azopyridine (azpy), pour avoir des cages plus grandes a montré une diminution de la capacité maximale de capture d'iode. Les données expérimentales ont suggéré que pour un confinement d'iode optimisé, le réseau doit disposer de cages avec une dimension très proche de la molécule d'iode (0.5 nm). Après l'étude des matériaux massifs, nous avons considéré la préparation de nanoparticules supportées de NiII(pz)[NiII(CN)4] pour la capture d'iode. Nous avons obtenu les nanoparticules via un procédé étape par étape, par imprégnation d'une série de silices mésoporeuses greffées avec un ligand diamine, puis avec les précurseurs de NiII(pz)[NiII(CN)4]. Nous avons utilisé en tant que supports, une silice SBA-15 modifiée et des billes de verre poreux pour obtenir respectivement les nanocomposites Sil@NP and Glass@NP. Par microscopie électronique à transmission, nous avons détecté pour Sil@NP des nanoparticules de diamètre moyen 2.8 nm. L'adsorption d'iode dans les nanoparticules a été confirmée par spectroscopie FT-IR. Les traitements thermiques ont indiqué que la portion d'iode dans les nanoparticules pouvait être désorbé dans l'intervalle 150-250 °C. Nous avons pu estimer que la capacité de capture des nanoparticles était très proche de la capacité du massif NiII(pz)[NiII(CN)4]@I2. / Nuclear power industry still demands further research to improve the methods for the storage and the confinement of the hazardous radioactive wastes coming from the fission of radionuclide 235U. The volatile radioactive 129I (half-life time 15x107 years) is one of the most critical products coming from the reprocessing plants in the fuel-closed cycles. In the present thesis the family of coordination solid networks, known as Hofmann-type structures, was studied in the form as both bulk and supported nanoparticles for the selective entrapment of the molecular iodine. This set of investigated materials exhibited a general formula M'(L)[M''(CN)4] where M' = NiII or CoII; L = pyrazine, 4,4'-bipyridine, 4,4'-azopyridine; M'' = NiII, PdII or PtII. Initially, the material NiII(pz)[NiII(CN)4] and its analogue structures were precipitated as microcrystalline bulky compounds and fully characterized. The insertion of the iodine in the bulky host structures was performed with different methods: 1) adsorption of iodine in solutions of cyclohexane at room temperature; 2) adsorption of iodine vapours at 80 °C; 3) adsorption of iodine vapours at 80 °C in presence of water steam (for few selected materials). The different methods did not affect the nature of the confined iodine. For the entrapment in solution, results indicated that the Hofmann-type structures NiII(pz)[NiII(CN)4], NiII(pz)[PdII(CN)4] and CoII(pz)[NiII(CN)4] could host one I2 molecule per unit cell. The iodine resulted physisorbed as molecular iodine in interaction with the host structure. GCMC simulations confirmed the maximal capacities and indicated that iodine could interact with both the pyrazine and the coordinated cyanides. Experimentally, however, the modulation of the metals showed a slightly different strength of interaction I2-lattice bringing to a different lattice adaptation. The materials also could be fully regenerated since the complete desorption of iodine occurred before the decomposition of the host structure. Reiterated adsorption-desorption steps (3 cycles) on the networks NiII(pz)[NiII(CN)4] and NiII(pz)[PdII(CN)4] indicated an excellent structural resistance to cycling and a maintained high capacity. A different mechanism of confinement was detected for the structure NiII(pz)[PtII(CN)4] which reacted with iodine giving complex NiII(pz)[PtII/IV(CN)4].I-. Finally, the modulation of the organic ligand L indicated that the replacement of the ligand pyrazine with longer ligands, to obtain larger pores, had a detrimental effect on the maximal iodine loading due to a weaker confinement. After the study of the bulk materials, we considered the preparation of supported nanoparticles of NiII(pz)[NiII(CN)4] for the entrapment of iodine. The nanoparticles were obtained by a step-by-step method, impregnating a set of diammine-grafted mesoporous silicas with the precursors of NiII(pz)[NiII(CN)4]. We detected nanoparticles with mean size 2.8 nm by transmission electronic microscopy. The insertion of iodine in the nanoparticles was confirmed by FT-IR. Thermal treatments indicated that the portion of iodine inside the nanoparticles could be reversibly desorbed in the range 150-250 °C and reintroduced in a cyclic process. It was estimated that the amount of physisorbed iodine in the NPs, with respect to the amount of deposited NPs matched with the maximal capacity NiII(pz)[NiII(CN)4]@I2.
3

Discovery of actinium and the thorium isotope 230Th

Niese, Siegfried 25 January 2017 (has links)
In 1902 Friedrich Giesel has discovered after co-precipitation with lanthanum from samples obtained by chemical treatment of uranium minerals a new radioactive element. Because of its emanating properties he named it emanium, which we now know as actinium. In 1899 André-Louis Debierne found a radioactive substance with chemical properties of titanium, and after further investigations in 1900 of thorium. Because of its high activity he explained it as a new element and named it actinium. It mainly consisted of 230Th. In 1904 he explained that his actinium was identical with the emanium found by Giesel. He had taken over the discovery of Giesel and had rejected his own one, because he had been afraid that his discovered substance which he could not separate from thorium would not be accepted as a new chemical element. In 1909 Boltwood looked for the long-lived precursor of radium. He isolated according to the procedure of Debierne the thorium fraction from the pitchblende and after some time he found in it radium but not in emanium produced according the procedure of Giesel. Boltwood named the mother-element of radium ionium, which was first accepted as a new radioactive element and later identified as thorium isotope 230Th. Although Debierne has discovered and later rejected this substance for a long time he was accepted as discoverer of actinium. / Entdeckung des Actiniums und des Thoriumisotopes 230Th Im Jahr 1902 entdeckte Friedrich Giesel nach Mitfällung von Lanthan aus Proben der chemischen Behandlung von Uranmineralen ein neues radioaktives Element, das er wegen seiner starken Bildung von Emanation Emanium nannte und mit dem jetzt als Actinium bezeichneten Element identisch ist.1899 fand André-Louis Debierne in Pechblende eine dem Titan chemisch ähnliche radioaktive Substanz, der er 1900 eine größere Ähnlichkeit mit dem Thorium zuschrieb. Wegen seiner hohen Radioaktivität erklärte er sie für ein neues Element und nannte es Actinium. Es bestand hauptsächlich aus 230Th. 1904 erklärte er, dass sein Actinium mit dem von Giesel entdeckten dem Lanthan ähnlichen Emanium identisch sei. Er übernahm Giesels Entdeckung und verwarf seine eigene, weil er fürchtete, dass seine entdeckte Substanz, die er nicht vom Thorium trennen konnte, nicht als neues chemisches Element anerkannt werden würde. Als Bertran Boltwood1909 nach den langlebigen Vorgängerelement von Radium suchte, trennte er nach der Vorschrift von Debierne die Thoriumfraktion aus der Pechblende ab und stellte fest, dass sich daraus mit der Zeit Radium gebildet hatte, wogegen sich aus dem nach der Vorschrift von Giesel abgetrennten Emanium kein Radium gebildet hatte. Boltwod nannte das Vorgängerelement von Radium Ionium, das zuerst als neues radioaktives Element anerkannt und entspäter als Thoriumisotop 230Th identifiziert wurde. Trotzdem Debierne nicht Actinium sondern diese Substanz entdeckt und später verworfen hatte, war er lange Zeit als Entdecker des Actiniums anerkannt.

Page generated in 0.071 seconds