Spelling suggestions: "subject:"radiosity hiérarchique"" "subject:"radiosensibilité hiérarchique""
1 |
Simulation de champs sonores de haute qualité pour des applications graphiques interactivesTsingos, Nicolas 04 December 1998 (has links) (PDF)
Ce travail porte sur la simulation de champs sonores de haute qualité pour des applications graphiques interactives. Dans ce cadre, nous nous sommes intéressé à trois problèmes : le calcul interactif des effets de l'occultation des ondes sonores par des obstacles, l'intégration du son dans un système d'animation et de réalité virtuelle et la simulation adaptative des réflections du son dans des environnements réverbérants. Nous présentons une méthode originale permettant d'approcher les effets des obstacles sur la propagation des ondes sonores. Cette méthode qualitative est fondée sur le calcul de l'obstruction des premiers ellipsoïdes de Fresnel. Pour cela nous utilisons le rendu câblé des cartes graphiques spécialisées pour effectuer un calcul interactif entre une source et un récepteur ponctuels dans des environnements généraux. Une extension plus quantitative, basée sur la théorie de Fresnel-Kirchhoff est également décrite. Nous décrivons également un système interactif de simulation acoustique. Il permet le rendu synchronisé du son et de l'image dans le cadre d'applications d'animation de synthèse et de réalité virtuelle. Nous y avons intégré notre approche de traitement des occultations sonores. Nous présentons comment d'autres effets, comme les réflections spéculaires du son ou l'effet Doppler sont également pris en compte. Enfin, nous introduisons une technique originale de simulation adaptative fondée sur un formalisme proche de la radiosité hiérarchique utilisée en synthèse d'images. Elle permet de prendre en compte efficacement des réflections globales spéculaires et diffuses dans le cadre d'échanges énergétiques dépendants du temps. La solution obtenue est indépendante du point d'écoute et ouvre la porte à des applications de parcours interactifs de l'environnement virtuel. En outre, la complexité du processus peut être contrôlée, permettant des applications plus quantitatives, comme la prévision des qualités acoustiques de lieux d'écoute. Ces trois contributions peuvent permettre de réaliser un système de simulation complet d'une scène sonore virtuelle pouvant être utilisé dans une variété d'applications. Celles-ci ne se limitent toutefois pas à l'acoustique, mais peuvent être étendues à la simulation de propagation d'ondes radioélectriques pour la téléphonie mobile ou les réseaux sans fils.
|
2 |
Simulation globale de l'éclairage pour des séquences animées prenant en en compte la cohérence temporelleDamez, Cyrille 10 December 2001 (has links) (PDF)
Les méthodes globales de simulation de l'éclairage permettent, à la différence des méthodes d'éclairage local, d'exprimer l'équilibre énergétique dans les échanges entre différents objets, et donc de simuler précisément les effets subtils d'éclairage dûs aux nombreuses inter-réflexions. Il est donc naturel de souhaiter les utiliser pour la synthèse réaliste de films d'animation. Plutôt que de résoudre une succession d'équations intégrales tri-dimensionelles, nous modélisons les échanges lumineux ayant lieu au cours de l'animation sous la forme d'une unique équation intégrale quadri-dimensionelle. Dans le cas ou l'intégralité des mouvements est connue à l'avance, nous proposons une extension de l'algorithme de radiosité hiérarchique mettant à profit la cohérence temporelle. La radiosité en chaque point et à chaque instant y est exprimée dans une base de fonctions hiérarchiques définies sur un maillage produit par un processus de raffinement. L'extension de ce maillage à un espace à quatre dimensions nous permet de calculer des échanges lumineux sur un intervalle de temps fini au lieu d'une date donnée. L'algorithme ainsi défini permet la simulation de l'éclairage global diffus dans une scène animée, dans un temps largement inférieur, avec une qualité équivalente. Nous avons développé pour cela de nouveaux oracles de raffinement ad hoc, que nous présentons ici. Afin de permettre le calcul de scènes géométriquement complexes, nous présentons une nouvelle politique de regroupement hiérarchique des objets adaptée au cas quadri-dimensionnel. Nous présentons également un algorithme permettant la réduction des discontinuités temporelles dues aux approximations effectuées lors de la résolution, basé sur l'emploi de bases de multi-ondelettes. Finalement, nous présentons un mécanisme d'ordonnancement des calculs et de sauvegarde temporaire sur une mémoire de masse permettant de réduire la consommation en mémoire vive de l'algorithme.
|
3 |
Le contrôle de l'erreur dans la méthode de radiosité hiérarchiqueHolzschuch, Nicolas 05 March 1996 (has links) (PDF)
Nous présentons ici plusieurs améliorations d'un algorithme de modélisation de l'éclairage, la méthode de radiosité. Pour commencer, une analyse détaillée de la méthode de radiosité hiérarchique permet de souligner ses points faibles et de mettre en évidence deux améliorations simples : une évaluation paresseuse des interactions entre les objets, et un nouveau critère de raffinement qui élimine en grande partie les raffinements inutiles. Un bref rappel des propriétés des fonctions de plusieurs variables et de leurs dérivées suit, qui permet d'abord de déduire une réécriture de l'expression de la radiosité, d'où un calcul numérique plus précis. Les méthodes d'estimation de l'erreur produite au cours du processus de modélisation de la lumière sont introduites. Nous voyons alors comment les propriétés de concavité de la fonction de radiosité permettent -- grâce au calcul des dérivées successives de la radiosité -- un contrôle complet de l'erreur commise dans la modélisation des interactions entre les objets, et donc un encadrement précis de la radiosité. Nous présentons un critère de raffinement basé sur cette modélisation des interactions, et un algorithme complet de radiosité hiérarchique intégrant ce critère de raffinement, et donc permettant un contrôle de l'erreur commise sur la radiosité au cours de la résolution. Finalement, nous présentons les méthodes de calcul pratique des dérivées successives de la radiosité (gradient et Hessien) dans le cas d'un émetteur constant sans obstacles tout d'abord, puis dans le cas d'un émetteur constant en présence d'obstacles et dans le cas d'un émetteur sur lequel la radiosité varie de façon linéaire.
|
Page generated in 0.0483 seconds