1 |
Colourings of random graphsHeckel, Annika January 2016 (has links)
We study graph parameters arising from different types of colourings of random graphs, defined broadly as an assignment of colours to either the vertices or the edges of a graph. The chromatic number X(G) of a graph is the minimum number of colours required for a vertex colouring where no two adjacent vertices are coloured the same. Determining the chromatic number is one of the classic challenges in random graph theory. In Chapter 3, we give new upper and lower bounds for the chromatic number of the dense random graph G(n,p)) where p ∈ (0,1) is constant. These bounds are the first to match up to an additive term of order o(1) in the denominator, and in particular, they determine the average colour class size in an optimal colouring up to an additive term of order o(1). In Chapter 4, we study a related graph parameter called the equitable chromatic number. This is defined as the minimum number of colours needed for a vertex colouring where no two adjacent vertices are coloured the same and, additionally, all colour classes are as equal in size as possible. We prove one point concentration of the equitable chromatic number of the dense random graph G(n,m) with m = pn(n-1)/2, p < 1-1/e<sup>2</sup> constant, on a subsequence of the integers. We also show that whp, the dense random graph G(n,p) allows an almost equitable colouring with a near optimal number of colours. We call an edge colouring of a graph G a rainbow colouring if every pair of vertices is joined by a rainbow path, which is a path where no colour is repeated. The least number of colours where this is possible is called the rainbow connection number rc(G). Since its introduction in 2008 as a new way to quantify how well connected a given graph is, the rainbow connection number has attracted the attention of a great number of researchers. For any graph G, rc(G)≥diam(G), where diam(G) denotes the diameter. In Chapter 5, we will see that in the random graph G(n,p), rainbow connection number 2 is essentially equivalent to diameter 2. More specifically, we consider G ~ G(n,p) close to the diameter 2 threshold and show that whp rc(G) = diam(G) ∈ {2,3}. Furthermore, we show that in the random graph process, whp the hitting times of diameter 2 and of rainbow connection number 2 coincide. In Chapter 6, we investigate sharp thresholds for the property rc(G)≤=r where r is a fixed integer. The results of Chapter 6 imply that for r=2, the properties rc(G)≤=2 and diam(G)≤=2 share the same sharp threshold. For r≥3, the situation seems quite different. We propose an alternative threshold and prove that this is an upper bound for the sharp threshold for rc(G)≤=r where r≥3.
|
2 |
On The Complexity Of Grobner Basis And Border Basis DetectionPrabhanjan, V A 08 1900 (has links) (PDF)
The theory of Grobner bases has garnered the interests of a large number of researchers in computational algebra due to its applications not only in mathematics but also in areas like control systems, robotics, cryptography to name a few. It is well known that the computation of Grobner bases takes time doubly exponential in the number of indeterminates rendering it impractical in all but a few places.The current known algorithms for Grobner bases depend on the term order over which Grobner bases is computed. In this thesis, we study computational complexity of some problems in computational ideal theory. We also study the algebraic formulation of combinatorial optimization problems.
Gritzmann and Sturmfels (1993) posed the following question: Given a set of generators, decide whether it is a Gr¨obner bases with respect to some term order. This problem, termed as the Grobner Basis Detection(GBD)problem, was introduced as an application of Minkowski addition of polytopes. It was shown by Sturmfels and Wiegelmann (1997) that GBD is NP-hard. We study the problem for the case of zero-dimensional ideals and show that the problem is hard even in this special case. We study the detection problem in the case of border bases which are an alternative to Grobner bases in the case of zero dimensional ideals. We propose the Border Basis Detection(BBD) problem which is defined as follows: Given a set of generators of an ideal, decide whether that set of generators is a border basis of the ideal with respect to some order ideal. It is shown that BBD is NP-complete.
We also formulate the rainbow connectivity problem as a system of polynomial equations such that solving the polynomial system yields a solution to it. We give an alternate formulation of the rainbow connectivity problem as a membership problem in polynomial ideals.
|
Page generated in 0.0697 seconds