181 |
Development and evaluation of techniques for estimating short duration design rainfall in South Africa.Smithers, Jeffrey Colin. January 1998 (has links)
The objective of the study was to update and improve the reliability and accuracy of short
duration (s 24 h) design rainfall values for South Africa. These were to be based on
digitised rainfall data whereas previous studies conducted on a national scale in South Africa
were based on data that were manually extracted from autographic charts. With the longer
rainfall records currently available compared to the studies conducted in the early 1980s,
it was expected that by utilising the longer, digitised rainfall data in conjunction with
regional approaches, which have not previously been applied in South Africa, that more
reliable short duration design rainfall values could Ix: estimated.
A short duration rainfall database was established for South Africa with the majority of the
data contributed by the South African Weather Bureau (SAWB). Numerous errors such as
negative and zero time steps were identified in the SAWB digitised rainfall data. Automated
procedures were developed to identify the probable cause of the errors and appropriate
adjustments to the data were made. In cases where the cause of the error could be
established, the data were adjusted to introduce randomly either the minimum, average or
maximum intensity into the data as a result of the adjustment. The effect of the adjustments
was found to have no significant effect on the extracted Annual Maximum Series (AMS).
However, the effect of excluding erroneous points or events with erroneous points resulted
in significantly different AMS. The low reliability of much of the digitised SAW B rainfall
data was evident by numerous and large differences between daily rainfall totals recorded
by standard, non-recording raingauges, measured at 08:00 every day, and the total rainfall
depth for the equivalent period extracted from the digitised data. Hence alternative
techniques of estimating short duration rainfall values were developed, with the focus on
regional approaches and techniques that could be derived from daily rainfall totals measured
by standard raingauges.
Three approaches to estimating design storms from the unreliable short duration rainfall
database were developed and evaluated. The first approach used a regional frequency
analysis, the second investigated scaling relationships of the moments of the extreme events
and the third approach used a stochastic intra-daily model to generate synthetic rainfall
series.
In the regional frequency analyses, 15 relatively homogeneous rainfall clusters were
identified in South Africa and a regional index storm based approach using L-moments was
applied. Homogeneous clusters were identified using site characteristics and tested using
at-site data. The mean of the AMS was used as the index value and in 13 of the 15 relatively
homogeneous clusters the index value for 24 h durations were well estimated as a function
of site characteristics only, thus enabling the estimation of 24 h duration design rainfall
values at any location in South Africa.
In 13 of the 15 clusters the scaling properties of the moments of the AMS were used to
successfully estimate design rainfall values for duration < 24h, using the moments of the
AMS extracted from the data recorded by standard raingauges and regional relationships
based on site characteristics. It was found that L-moments scaled better and over a wider
range of durations than ordinary product moments.
A methodology was developed for the derivation of the parameters for two Bartlett-Lewis
rectangular pulse models using only standard raingauge data, thus enabling the estimation
of design values for durations as short as 1 h at sites where only daily rainfall data are
available.
In view of the low reliability of the majority of short duration rainfall data in South Africa,
it is recommended that the regional index value approach be adopted for South Africa, but
scaled using values derived from the daily rainfall data. The use of the intra-daily stochastic
rainfall models to estimate design rainfall values is recommended as further independent
confirmation of the reliability of the design values. / Thesis (M.Sc.)-University of Natal, Pietermaritzburg, 1998.
|
182 |
The dynamics and energetics of tropical-temperature troughs over Southern AfricaD'Abreton, Peter Charles January 1992 (has links)
Water vapour content and transport over southern Africa and adjacent oceans
are examined. Early summer rainfall over the northern and central interior of
South Africa tends to be associated with baroclinic controls whereas late-summer
rainfall is barotropic in origin. This is reflected in the northwesterly water vapour
transport from an Atlantic Ocean source by middle and upper tropospheric
westerly waves in early summer. A thermally indirect Ferrel cell, indicated-from
energetics, COpIU1nSthe· temperate nature of the early-summer atmosphere over
southern Africa. Late summer water vapour transport, in contrast, is strongly
from the tropics, with' a reduced eddy component, indicating an important
tropical control on late SUmmerrainfall especially in terms of fluctuations in the
position of the ascending limb of .the Walker cell Over southern Africa. The
Hadley cell is of importance to the late summer rainfall in that dry (wet) years
are associated with an anomalous cell OVereastern (central) South Africa such
that low level vapour transport is southerly (northerly). The anticyclone over the
eastern parts of southern Africa, coupled with. a trough over the interior
(especially at the 700 hPa pressure level), is important for the introduction of
water vapour over the subcontinent in wet and dry years and for
tropical-temperate trough case studies. Water vapour source regions differ from
early summer (Atlantic Ocean) to late summer (Indian Ocean), which reflects the
temperate. control on early and the tropical control on late summer circulation.
The convergence of water vapour over southern Africa in wet years and during
tropical-temperate troughs is not only important for cloud formation and
precipitation, but also for latent heat release associated with convergent water
vapour. Diabatic heating decreases the stability of the tropical atmosphere
thereby resulting in increased vertical motion. It also forces an anomalous Badley
circulation during wet late summers and tropical-temperate trough .cases as a
result of complex energy transformations. Heating increases eddy available
potential energy which is converted to zonal available potential energy by a
thermally indirect circulation found in the tropics. The zonal potential energy is
then converted to kinetic energy by the thermally direct Badley cell. Water
vapour and its variations are thus important for the precipitation, heating and
SUbsequent energy of the subtropical southern African atmosphere, / GR 2017
|
183 |
Influences of Climate variability on Rainfall Extremes of Different DurationsUnknown Date (has links)
The concept of Intensity Duration Frequency (IDF) relationship curve presents crucial design contribution for several decades under the assumption of a stationary climate, the frequency and intensity of extreme rainfall nonetheless seemingly increase worldwide. Based on the research conducted in recent years, the greatest increases are likely to occur in short-duration storms lasting less than a day, potentially leading to an increase in the magnitude and frequency of flash floods. The trend analysis of the precipitation influencing the climate variability and extreme rainfall in the state of Florida is conducted in this study. Since these local changes are potentially or directly related to the surrounding oceanic-atmospheric oscillations, the following oscillations are analyzed or highlighted in this study: Atlantic Multi-Decadal Oscillation (AMO), El Niño Southern Oscillation (ENSO), and Pacific Decadal Oscillations (PDO). Collected throughout the state of Florida, the precipitation data from rainfall gages are grouped and analyzed based on type of duration such as short-term duration or minute, in hourly and in daily period. To assess statistical associations based on the ranks of the data, the non-parametric tests Kendall’s tau and Spearman’s rho correlation coefficient are used to determine the orientation of the trend and ultimately utilize the testing results to determine the statistical significance of the analyzed data. The outcome of the latter confirms with confidence whether there is an increasing or decreasing trend in precipitation depth in the State of Florida. The main emphasis is on the influence of rainfall extremes of short-term duration over a period of about 50 years. Results from both Spearman and Mann-Kendall tests show that the greatest percentage of increase occurs during the short rainfall duration period. The result highlights a tendency of increasing trends in three different regions, two of which are more into the central and peninsula region of Florida and one in the continental region. Given its topography and the nature of its water surface such as the everglades and the Lake Okeechobee, Florida experience a wide range of weather patterns resulting in frequent flooding during wet season and drought in the dry season. / Includes bibliography. / Thesis (M.S.)--Florida Atlantic University, 2016. / FAU Electronic Theses and Dissertations Collection
|
184 |
Delimitation and analysis of homogeneous rainfall regions in the south-eastern TransvaalOlivier, Jana 10 March 2014 (has links)
M.Sc. (Geography) / The 1982/1983 drought in the summer rainfall regions of South Africa highlighted the dependence of the agricultural sector as well as the general economy of the country on climatic vagaries. The results as indicated in this dissertation fonn a basis for the development of a yield prediction model for maize in the south-eastern Transvaal. The study consists of two parts, namely:- a) The delimitation of the south-eastern Transvaal into smaller homogeneous rainfall regions. b) An investigation of spatial and temporal rainfall patterns within each region and over the study area as a whole. a) The delimitation of the south-eastern Transvaal into smaller homogeneous rainfall regions: Various methods were investigated for this purpose and T-mode Principal Components Analysis with the subsequent clustering of component scores were found to be the most acceptable. b) An investigation of spatial and temporal rainfall patterns within each region and over the study area as a whole: Various parameters such as rainfall amount~ number of rain-days~ rainfall intensity~ seasonality and variability of rainfall were analysed. The presence of rainfall cycles and absence of linear trends were established. The orographic effect of the Eastern Escarpment on the spatial distribution of rainfall amount, frequency and intensity is clearly shown. Areas where conditions are less suitable for the dry-land cultivation of crops due to factors such as rainfall variability (in excess of 30%), steep slopes and relatively low rainfall intensity, were identified. Significant correlations were found between spring and late summer rainfall of a dry year
|
185 |
Runoff and soil loss under different tillage and cropping system practices at Ginchi Vertsol in EthiopiaWelderufael, W.A., Woyessa, Y.E. January 2013 (has links)
Published Article / To assess and predict runoff and soil loss on different tillage methods coupled with alternative cropping systems in the central highland vertisols of Ethiopia, a study was carried out at Ginchi, Agricultural Research Sub-Center during 1996. The experiment was conducted on runoff plots of 4 meter wide by 22 meter long, on surface slopes that range between 0.1% and 2.3%. The data collected was analyzed using regression models and an empirical formula developed by the Soil Conservation Service of America (SCS, 1964; 1972), known as curve number (CN). Both the regression model and the SCS simulated the mean daily runoff reasonably well with R2 93% and 83%, respectively. The overall results obtained explain that the improved tillage practice, BBF could drain the excess surface water safely.
|
186 |
Data-Based Mechanistic approach to modelling of daily rainfall-flow relationship : a case of the Upper Vaal water management areaOchieng, G.M., Otieno, F.A.O. January 2008 (has links)
Published Article / Although deterministic models still dominate hydrological modelling, there is a notable paradigm shift in catchment response modelling. An approach to represent the daily rainfall-flow (R-F) relationship using Data-Based Mechanistic (DBM) modelling is presented. DBM modelling is an inductive empirical transfer function (TF) approach relating input to output. The study used secondary data from the Department of Water Affairs and Forestry for the Upper Vaal water management area at station C1H007. The R-F model identification and optimisation was implemented in the CAPTAIN Toolbox in MATLAB. The best estimated R-F model was a 2nd order TF with an input lag of one day and R 2T= 56%. In mechanistic interpretation, three parallel flow pathways were discerned; the fast flow, slow flow and the loss component each constituting 49.8%, 24% and 26.2% of the modelled flow respectively. The study demonstrates that the approach adopted herein produces reasonably satisfactory results with a minimum of the readily available catchment data.
|
187 |
Studies on interrill sediment delivery and rainfall kinetic energyRezaur, Rahman Bhuiyan. January 1999 (has links)
published_or_final_version / Civil Engineering / Doctoral / Doctor of Philosophy
|
188 |
Cultural Practices for Karnal Bunt ControlOttman, Michael 07 1900 (has links)
2 pp. / The weather near heading is the overriding factor in disease development. Cultural practices may be partially effective in controlling Karnal bunt, but cannot eliminate the disease completely.
|
189 |
A stochastic approach to space-time modeling of rainfall.Gupta, Vijay K.(Vijay Kumar),1946- January 1973 (has links)
This study gives a phenomenologically based stochastic model of space-time rainfall. Specifically, two random variables on the spatial rainfall, e.g., the cumulative rainfall within a season and the maximum cumulative rainfall per rainfall event within a season are considered. An approach is given to determine the cumulative distribution function (c.d.f.) of the cumulative rainfall per event, based on a particular random structure of space-time rainfall. Then the first two moments of the cumulative seasonal rainfall are derived based on a stochastic dependence between the cumulative rainfall per event and the number of rainfall events within a season. This stochastic dependence is important in the context of the spatial rainfall process. A theorem is then proved on the rate of convergence of the exact c.d.f. of the seasonal cumulative rainfall up to the iᵗʰ year, i ≥ 1, to its limiting c.d.f. Use of the limiting c.d.f. of the maximum cumulative rainfall per rainfall event up to the iᵗʰ year within a season is given in the context of determination of the 'design rainfall'. Such information is useful in the design of hydraulic structures. Special mathematical applications of the general theory are developed from a combination of empirical and phenomenological based assumptions. A numerical application of this approach is demonstrated on the Atterbury watershed in the Southwestern United States.
|
190 |
Field measurement and numerical modelling of infiltration and matric suctions within slopesTsaparas, Ilias January 2002 (has links)
No description available.
|
Page generated in 0.0436 seconds