• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Analysing the temporal dynamics of model performance for hydrological models

Reusser, Dominik, Blume, Theresa, Schaefli, Bettina, Zehe, Erwin January 2009 (has links)
The temporal dynamics of hydrological model performance gives insights into errors that cannot be obtained from global performance measures assigning a single number to the fit of a simulated time series to an observed reference series. These errors can include errors in data, model parameters, or model structure. Dealing with a set of performance measures evaluated at a high temporal resolution implies analyzing and interpreting a high dimensional data set. This paper presents a method for such a hydrological model performance assessment with a high temporal resolution and illustrates its application for two very different rainfall-runoff modeling case studies. The first is the Wilde Weisseritz case study, a headwater catchment in the eastern Ore Mountains, simulated with the conceptual model WaSiM-ETH. The second is the Malalcahuello case study, a headwater catchment in the Chilean Andes, simulated with the physicsbased model Catflow. The proposed time-resolved performance assessment starts with the computation of a large set of classically used performance measures for a moving window. The key of the developed approach is a data-reduction method based on self-organizing maps (SOMs) and cluster analysis to classify the high-dimensional performance matrix. Synthetic peak errors are used to interpret the resulting error classes. The final outcome of the proposed method is a time series of the occurrence of dominant error types. For the two case studies analyzed here, 6 such error types have been identified. They show clear temporal patterns, which can lead to the identification of model structural errors.
2

Stream Stage Monitoring with Community Science-Contributed Stage Data

Luffman, Ingrid, Connors, Daniel 01 January 2022 (has links)
Volunteered Geographic Information, data contributed by community scientists, is an increasingly popular tool to collect scientific data, involve the community in scientific research, and provide information and education about a prominent issue. Johnson City, Tennnessee, USA has a long history of downtown flooding, and recent redevelopment of two land parcels has created new city parks that mitigate flooding through floodwater storage, additional channel capacity, and reduced impervious surfaces. At Founders Park, a project to collect stage data using text messages from community scientists has collected 1479 stage measurements from 597 participants from May 2017 through July 2021. Text messages were parsed to extract the stage and merged with local precipitation data to assess the stream’s response to precipitation. Of 1479 observations, 96.7% were correctly parsed. Only 3% of observations were false positives (parser extracted incorrect stage value) or false negatives (parser unable to extract correct value but usable data were reported). Less than 2% of observations were received between 11 p.m. and 7 a.m., creating an overnight data gap, and fewer than 7% of observations were made during or immediately following precipitation. Regression models for stage using antecedent precipitation explained 21.6% of the variability in stream stage. Increased participation and development of an automated system to record stage data at regular intervals will provide data to validate community observations and develop more robust rainfall–runoff models.

Page generated in 0.0688 seconds