1 |
Elastic constants and sound velocities of Fe0.87Mn0.13 random alloy from first principlesNorell, Jesper January 2012 (has links)
In this study the elastic properties of a fcc Fe0.87Mn0.13 random alloy are studied by ab initio calculations. Ground state lattice parameters and elastic properties are calculated with Density Functional Theory using the Exact Muffin-Tin Orbital method and the Coherent Potential Approximation. Several magnetic models, approximations and distortion techniques are evaluated for optimized results, which are obtained by a Disordered Local Moment model with the Frozen Core and Generalized Gradient approximations using volume-conserving distortions. Conclusively the longitudinal sound velocities are calculated from second order elastic stiffness constants and visualized by two different codes. The importance of magnetism for elastic properties is confirmed, as is the usefulness of the optimized computational scheme; all quantities obtained via the scheme is in accord with earlier theoretical and experimental results. Volume-conserving distortions are found to be more precise than volume-altering for calculation of elastic constants but also to be highly dependent on the precision of bulk modulus determination. The two sound-velocity codes are in complete agreement.
|
2 |
First-Principles calculations of Core-Level shifts in random metallic alloys: The Transition State ApproachGöransson (Asker), Christian January 2004 (has links)
<p>The overall aim of this thesis is to compare different methods for calculation of Core-Level shifts in metallic alloys. The methods compared are the Initial State model, the Complete screening and the Transition state model. Core-level shifts can give information of chemical bonding and about the electronic structure in solids.</p><p>The basic theory used is the so-called Density-Functional-Theory, in conjunction with the Local-Density Approximation and the Coherent-Potential- Approximation. The metallic alloys used are Silver-Palladium, Copper-Palladium, Copper-Gold and Copper-Platinum, all inface-centered-cubic configuration.</p><p>The complete screening- and the transition-state model are found to be in better agreement with experimental results than those calculated with the initial state model. This is mainly due to the fact that the two former models includes final-state effects, whereas the last one do not. The screening parameters within the Coherent-Potential approximation are also investigated. It is found that the Screened-Impurity Model can extend the validity of the Coherent-Potential-Approximation and increase it's accuracy.</p>
|
3 |
First-Principles calculations of Core-Level shifts in random metallic alloys: The Transition State ApproachGöransson (Asker), Christian January 2004 (has links)
The overall aim of this thesis is to compare different methods for calculation of Core-Level shifts in metallic alloys. The methods compared are the Initial State model, the Complete screening and the Transition state model. Core-level shifts can give information of chemical bonding and about the electronic structure in solids. The basic theory used is the so-called Density-Functional-Theory, in conjunction with the Local-Density Approximation and the Coherent-Potential- Approximation. The metallic alloys used are Silver-Palladium, Copper-Palladium, Copper-Gold and Copper-Platinum, all inface-centered-cubic configuration. The complete screening- and the transition-state model are found to be in better agreement with experimental results than those calculated with the initial state model. This is mainly due to the fact that the two former models includes final-state effects, whereas the last one do not. The screening parameters within the Coherent-Potential approximation are also investigated. It is found that the Screened-Impurity Model can extend the validity of the Coherent-Potential-Approximation and increase it's accuracy.
|
Page generated in 0.0667 seconds