• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • Tagged with
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

The Effects of Natural Selection and Random Genetic Drift in Structured Populations

January 2011 (has links)
abstract: Building mathematical models and examining the compatibility of their theoretical predictions with empirical data are important for our understanding of evolution. The rapidly increasing amounts of genomic data on polymorphisms greatly motivate evolutionary biologists to find targets of positive selection. Although intensive mathematical and statistical studies for characterizing signatures of positive selection have been conducted to identify targets of positive selection, relatively little is known about the effects of other evolutionary forces on signatures of positive selection. In this dissertation, I investigate the effects of various evolutionary factors, including purifying selection and population demography, on signatures of positive selection. Specifically, the effects on two highly used methods for detecting positive selection, one by Wright's Fst and its analogues and the other by footprints of genetic hitchhiking, are investigated. In Chapters 2 and 3, the effect of purifying selection on Fst is studied. The results show that purifying selection intensity greatly affects Fst by modulating allele frequencies across populations. The footprints of genetic hitchhiking in a geographically structured population are studied in Chapter 4. The results demonstrate that footprints of genetic hitchhiking are significantly influenced by geographic structure, which may help scientists to infer the origin and spread of the beneficial allele. In Chapter 5, the stochastic dynamics of a hitchhiking allele are studied using the diffusion process of genetic hitchhiking conditioned on the fixation of the beneficial allele. Explicit formulae for the conditioned two-locus diffusion process of genetic hitchhiking are derived and stochastic aspects of genetic hitchhiking are investigated. The results in this dissertation show that it is essential to model the interaction of neutral and selective forces for correct identification of the targets of positive selection. / Dissertation/Thesis / Ph.D. Biology 2011
2

Information Geometry and the Wright-Fisher model of Mathematical Population Genetics

Tran, Tat Dat 31 July 2012 (has links) (PDF)
My thesis addresses a systematic approach to stochastic models in population genetics; in particular, the Wright-Fisher models affected only by the random genetic drift. I used various mathematical methods such as Probability, PDE, and Geometry to answer an important question: \"How do genetic change factors (random genetic drift, selection, mutation, migration, random environment, etc.) affect the behavior of gene frequencies or genotype frequencies in generations?”. In a Hardy-Weinberg model, the Mendelian population model of a very large number of individuals without genetic change factors, the answer is simple by the Hardy-Weinberg principle: gene frequencies remain unchanged from generation to generation, and genotype frequencies from the second generation onward remain also unchanged from generation to generation. With directional genetic change factors (selection, mutation, migration), we will have a deterministic dynamics of gene frequencies, which has been studied rather in detail. With non-directional genetic change factors (random genetic drift, random environment), we will have a stochastic dynamics of gene frequencies, which has been studied with much more interests. A combination of these factors has also been considered. We consider a monoecious diploid population of fixed size N with n + 1 possible alleles at a given locus A, and assume that the evolution of population was only affected by the random genetic drift. The question is that what the behavior of the distribution of relative frequencies of alleles in time and its stochastic quantities are. When N is large enough, we can approximate this discrete Markov chain to a continuous Markov with the same characteristics. In 1931, Kolmogorov first introduced a nice relation between a continuous Markov process and diffusion equations. These equations called the (backward/forward) Kolmogorov equations which have been first applied in population genetics in 1945 by Wright. Note that these equations are singular parabolic equations (diffusion coefficients vanish on boundary). To solve them, we use generalized hypergeometric functions. To know more about what will happen after the first exit time, or more general, the behavior of whole process, in joint work with J. Hofrichter, we define the global solution by moment conditions; calculate the component solutions by boundary flux method and combinatorics method. One interesting property is that some statistical quantities of interest are solutions of a singular elliptic second order linear equation with discontinuous (or incomplete) boundary values. A lot of papers, textbooks have used this property to find those quantities. However, the uniqueness of these problems has not been proved. Littler, in his PhD thesis in 1975, took up the uniqueness problem but his proof, in my view, is not rigorous. In joint work with J. Hofrichter, we showed two different ways to prove the uniqueness rigorously. The first way is the approximation method. The second way is the blow-up method which is conducted by J. Hofrichter. By applying the Information Geometry, which was first introduced by Amari in 1985, we see that the local state space is an Einstein space, and also a dually flat manifold with the Fisher metric; the differential operator of the Kolmogorov equation is the affine Laplacian which can be represented in various coordinates and on various spaces. Dynamics on the whole state space explains some biological phenomena.
3

Information Geometry and the Wright-Fisher model of Mathematical Population Genetics

Tran, Tat Dat 04 July 2012 (has links)
My thesis addresses a systematic approach to stochastic models in population genetics; in particular, the Wright-Fisher models affected only by the random genetic drift. I used various mathematical methods such as Probability, PDE, and Geometry to answer an important question: \"How do genetic change factors (random genetic drift, selection, mutation, migration, random environment, etc.) affect the behavior of gene frequencies or genotype frequencies in generations?”. In a Hardy-Weinberg model, the Mendelian population model of a very large number of individuals without genetic change factors, the answer is simple by the Hardy-Weinberg principle: gene frequencies remain unchanged from generation to generation, and genotype frequencies from the second generation onward remain also unchanged from generation to generation. With directional genetic change factors (selection, mutation, migration), we will have a deterministic dynamics of gene frequencies, which has been studied rather in detail. With non-directional genetic change factors (random genetic drift, random environment), we will have a stochastic dynamics of gene frequencies, which has been studied with much more interests. A combination of these factors has also been considered. We consider a monoecious diploid population of fixed size N with n + 1 possible alleles at a given locus A, and assume that the evolution of population was only affected by the random genetic drift. The question is that what the behavior of the distribution of relative frequencies of alleles in time and its stochastic quantities are. When N is large enough, we can approximate this discrete Markov chain to a continuous Markov with the same characteristics. In 1931, Kolmogorov first introduced a nice relation between a continuous Markov process and diffusion equations. These equations called the (backward/forward) Kolmogorov equations which have been first applied in population genetics in 1945 by Wright. Note that these equations are singular parabolic equations (diffusion coefficients vanish on boundary). To solve them, we use generalized hypergeometric functions. To know more about what will happen after the first exit time, or more general, the behavior of whole process, in joint work with J. Hofrichter, we define the global solution by moment conditions; calculate the component solutions by boundary flux method and combinatorics method. One interesting property is that some statistical quantities of interest are solutions of a singular elliptic second order linear equation with discontinuous (or incomplete) boundary values. A lot of papers, textbooks have used this property to find those quantities. However, the uniqueness of these problems has not been proved. Littler, in his PhD thesis in 1975, took up the uniqueness problem but his proof, in my view, is not rigorous. In joint work with J. Hofrichter, we showed two different ways to prove the uniqueness rigorously. The first way is the approximation method. The second way is the blow-up method which is conducted by J. Hofrichter. By applying the Information Geometry, which was first introduced by Amari in 1985, we see that the local state space is an Einstein space, and also a dually flat manifold with the Fisher metric; the differential operator of the Kolmogorov equation is the affine Laplacian which can be represented in various coordinates and on various spaces. Dynamics on the whole state space explains some biological phenomena.

Page generated in 0.1638 seconds