• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 3
  • 3
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Effects of Stochastic (Random) Surface Roughness on Hydrodynamic Lubrication of Deterministic Asperity

Vyas, Prerit 01 January 2005 (has links)
In order to achieve enhanced and cost-effective performance of engineering components, Surface Engineering embraces traditional and innovative surface technologies which modify the surface properties of metallic and non-metallic engineering components for specific and sometime unique engineering purposes. The surface roughness of an engineered surface may be classified as: the random surface roughness which is a product of surface finishing and the deterministic surface roughness which is engineered to increase the lubrication characteristics of the hydro dynamically lubricated thrust ring. The effect of stochastic/random roughness can not be ignored when the roughness is of the same amplitude as that of fluid film thickness. Average flow model derived in terms of flow factors which are functions of the roughness characteristics is used to study the random surface roughness effects on hydrodynamic lubrication of deterministic asperity. In addition, the effect of boundary conditions on flow factors is studied by calculating the pressure and shear flow factor using two different new boundary conditions. The results are obtained for random surface roughness having a Gaussian distribution of roughness heights.
2

Fabricating Superhydrophobic and Superoleophobic Surfaces with Multiscale Roughness Using Airbrush and Electrospray

Almilaji, Karam N 01 January 2016 (has links)
Examples of superhydrophobic surfaces found in nature such as self-cleaning property of lotus leaf and walking on water ability of water strider have led to an extensive investigation in this area over the past few decades. When a water droplet rests on a textured surface, it may either form a liquid-solid-vapor composite interface by which the liquid droplet partially sits on air pockets or it may wet the surface in which the water replaces the trapped air depending on the surface roughness and the surface chemistry. Super water repellent surfaces have numerous applications in our daily life such as drag reduction, anti-icing, anti-fogging, energy conservation, noise reduction, and self-cleaning. In fact, the same concept could be applied in designing and producing surfaces that repel organic contaminations (e.g. low surface tension liquids). However, superoleophobic surfaces are more challenging to fabricate than superhydrophobic surfaces since the combination of multiscale roughness with re-entrant or overhang structure and surface chemistry must be provided. In this study, simple, cost-effective and potentially scalable techniques, i.e., airbrush and electrospray, were employed for the sake of making superhydrophobic and superoleophobic coatings with random and patterned multiscale surface roughness. Different types of silicon dioxide were utilized in this work to in order to study and to characterize the effect of surface morphology and surface roughness on surface wettability. The experimental findings indicated that super liquid repellent surfaces with high apparent contact angles and extremely low sliding angles were successfully fabricated by combining re-entrant structure, multiscale surface roughness, and low surface energy obtained from chemically treating the fabricated surfaces. In addition to that, the experimental observations regarding producing textured surfaces in mask-assisted electrospray were further validated by simulating the actual working conditions and geometries using COMSOL Multiphysics.
3

Influence of random surface roughness on friction in elastohydrodynamic, mixed and boundary lubrication

Bonaventure, Julien 18 October 2017 (has links)
La plupart des systèmes mécaniques contiennent des contacts lubrifiés (articulations, roulements, ...) qui sont soumis à des efforts importants. Dans ce travail expérimental, on s’intéresse à l’influence de la rugosité sur la friction dans les régimes de lubrification élastohydrodynamique (EHD), mixte, et limite dans des conditions représentatives des contacts dans un moteur de voiture. Les surfaces utilisées dans ce travail sont principalement des aciers usinés industriellement, revêtus ou non de Diamond-Like Carbon (DLC). La force de friction dans les régimes mixte et limite étant bien plus importante qu’en régime EHD, il est important de pouvoir prédire les transitions d’un régime à l’autre. Le problème est que la rugosité affecte significativement les vitesses de transition entre ces régimes, de telle manière qu’il est difficile de prédire le régime de fonctionnement d’un couple donné de surfaces. Les travaux expérimentaux s’attardant sur ce problème sont rares, et les tentatives théoriques d’inclure l’effet de rugosités aléatoires reposent sur des paramètres difficiles à mesurer à cause de leur grande dépendance vis-à-vis des conditions de filtrage, d’échantillonnage, et de leur non-stationnarité. à partir de nombreuses mesures topograhiques (interférométrie et AFM), une méthode assurant la représentativité des paramètres statistiques de rugosité est donc d’abord mise en œuvre pour caractériser des surfaces dont la rugosité va du nanomètre au micron. Des expériences de Stribeck sont ensuite menées avec ces surfaces afin de corréler leur signature morphologique à leur comportement en friction. La rhéologie sous pression de lubrifiants (poly-α oléfines) est mesurée dans un contact lisse en fonction de la pression et de la température, ce qui permet de prédire quantitativement la friction en régime élastohydrodynamique pour tout couple de surfaces, mais aussi de définir un critère non phénoménologique d’entrée en régime de lubrification mixte. à haute vitesse d’entraînement, la contrainte visqueuse décroît avec le taux de cisaillement ce qui est traditionnellement attribué à un échauffement du lubrifiant. On montre que les effets thermiques ne peuvent expliquer une telle chute et on l’explique par l’étalement du profil de pression dans le convergent, phénomène significatif quand l’épaisseur de lubrifiant devient de l’ordre d’un dixième de la taille du contact. Les résultats montrent que le produit de la viscosité dans le convergent avec la vitesse d’entraînement à la transition mixte-EHD suit une loi de puissance super-linéaire avec la rugosité, tous matériaux confondus, ce qui permet de prédire cette transition en fonction de la rugosité. La transition entre régimes mixte et limite est plus complexe et laisse apparaître un comportement clairement différent entre les contacts DLC/DLC et les contacts mettant en jeu au moins une surface d’acier. Pour les contacts DLC/DLC, la friction en régime limite correspond au cisaillement plastique du lubrifiant, ce qui explique que la rugosité n’affecte pas le frottement limite de ces contacts. Le frottement des contacts acier/acier et acier/DLC est plus important et présente deux évolutions monotones avec la rugosité composite du contact, que nous interprétons grâce à des expériences tribologiques à haut taux de glissement. Finalement, un modèle de portance mixte basé sur la théorie de Greenwood-Williamson est mis en œuvre et permet de reproduire avec une précision honorable les courbes de Stribeck obtenues expérimentalement. En particulier, ce modèle permet de déterminer les conditions d’échantillonnage optimales pour déterminer les propriétés des aspérités. / Most mechanical systems include lubricated contacts submitted to important strengths. The present work deals with the influence of surface roughness on friction in the elastohydrodynamic (EHD), mixed and boundary lubrication regimes, with operating conditions that are typically those found in an internal combustion engine. Most of the surfaces used in the experiments are machined steel, with or with a Diamond-Like Carbon (DLC) coating. Given the friction in boundary and mixed lubrication being higher than in EHD lubrication, it is crucial to predict the transitions between these regimes. These strongly depend on surface roughness. There are very few experimental works that deal with this issue, and the theoretical attempts to include the influence of random surface roughness are based on roughness parameters that are difficult to measure because of their dependence towards the sampling conditions and their non-stationarity. Based on numerous topographical surveys (using interferometry and AFM), a method is implemented to ensure the representativeness of roughness statistical parameters in order to characterize a range of surface roughnesses within the interval [0.001 ; 1] μm. Then, these surfaces are rubbed against each other using Stribeck procedures in order to correlate their morphology to their friction behaviour. The high-pressure rheology of poly-α olefins is measured in smooth contacts with respect to the pressure and the temperature. This not only allows to quantify the friction force for any contact operating in EHD lubrication, but also to set a criterion to spot the onset of mixed lubrication. At high entrainment speed, the viscous shear stress vanishes, which is often attributed to shear heating. It is shown that thermal effects can not explain such a drop of friction for our own experiments. However, the widening of the pressure profile — which becomes significant when the film thickness becomes comparable to a tenth the contact length — is more likely to explain this behaviour. Our results show that the product of the inlet viscosity with the entrainment speed, spotted at the mixed-EHD transition, follows a super linear power law with the RMS roughness, whatever the materials involved, which allows to predict whether a contact operate in mixed lubrication or not. The transition from mixed to boundary lubrication reveals material and roughness-dependent with a clearly different behaviour between DLC/DLC contacts and contacts involving at least one steel body. Regarding the DLC/DLC contacts, the boundary friction is due to the plastic shearing of the lubricant, which explains why surface roughness has no influence on boundary friction for these contacts. With Steel/DLC and steel/steel contacts, the boundary friction presents two monotonous trends versus the composite RMS roughness. Eventually, a mixed bearing model based on the Greenwood-Willimason assumptions was implemented and allowed to reproduce quite closely the experimentally obtained Stribeck curves. This implementation indicates in particular the sampling conditions that are optimal to capture relevant asperity parameters.

Page generated in 0.0822 seconds