• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Fabrication and Structural Performance of Random Wetlay Composite Sandwich Panels

Glenn, Christopher Edward 27 June 2003 (has links)
The random wetlay process is used to make fiber-reinforced thermoplastic sheets that can be compression molded into composite panels at little cost. By utilizing these composite panels as the facesheets of honeycomb sandwich structures, it is possible to greatly increase the bending stiffness of the composite without adding significant weight. The random wetlay composite facesheets used in this research consisted of 25% E-glass fibers and 75% PET by weight. The thickness uniformity of the facesheets was difficult to control. The core of the sandwich structure was HexWeb&174; EM. Three low-cost adhesives were examined for secondarily bonding the facesheets to the core: polyurethane glue; epoxy paste; and 3M Scotch-Grip&174; plastic adhesive. The polyurethane glue mixed with Cab-O-Sil filler was easiest to apply and provided the largest flatwise tensile strength. Mathematical models were developed to predict the static behavior of sandwich beams and plates in bending. Three-point bend tests were performed on a sandwich beam in accordance with ASTM C 393. A sandwich plate simply supported along two opposite edges and free along the other two edges was subjected to a line-load using weights and a wiffle tree arrangement. An effective facesheet modulus and Poisson's ratio were found by comparing the measured displacements to the sandwich plate theory. The shadow moiré technique was used to visualize the displacement of the line-loaded sandwich plate. The overall shape of the displacement was very similar to the shape predicted by the sandwich plate theory. / Master of Science
2

Wetlaid Cellulose Fiber-Thermoplastic Hybrid Composites - Effects of Lyocell and Steam Exploded Wood Fiber Blends

Johnson, Richard Kwesi 27 July 2004 (has links)
Fiber hybridization involves the blending of high and low performance fibers in a common matrix to yield a composite with a balance of properties that cannot be achieved by using either fiber alone. In this study, the random wetlay process was used as a compounding method to investigate the effects of fiber hybridization on the mechanical, viscoelastic, and sorption characteristics of steam-exploded wood (SEW) and lyocell (high performance regenerated cellulose) fiber-reinforced polypropylene (PP) composites. The two fiber types were blended in varying proportions within a fixed total fiber content of 50 wt. % and compared with non-hybrid lyocell- and SEW-PP controls. Using PP matrix as basis, it was observed that moduli of all composites generally increased with increasing lyocell concentration, ranging from a minimum 66 % for SP 50 (SEW/PP control) to a maximum 233 % for LP 50 (lyocell/PP control). Ultimate strengths on the other hand, declined for SP 50 but increased with the inclusion of lyocell fibers. Comparisons of hybrid (having 5 - 20 wt % lyocell) with non-hybrid (having 25 - 50 wt. % lyocell) composites revealed a surprisingly greater strength and modulus-building efficiency (by as much as 2.6 times) in the hybrid composites. This observation indicated possible synergism between lyocell and SEW. Analyses of composite property gains as a function of fiber cost also showed greater cost benefits (highest for tensile modulus) in favor of hybridization. The advantages of fiber hybridization on composite properties were again evident under dynamic mechanical analysis where no significant differences in the storage moduli were found between a hybrid composite with 20 wt. % lyocell and a non-hybrid composite with 50 wt. % lyocell loading. Application of the time-temperature superposition principle (TTSP) made it possible to predict storage moduli over extended frequencies for PP and its composites. Comparison of shift factor versus temperature plots revealed decreasing relaxation times of PP with increasing lyocell concentration, which indicated that PP interacted better with lyocell than with SEW fibers. Finally, it was observed from sorption tests that hybrid composites absorbed less moisture than non-hybrid counterparts of either fiber type. The reasons for this observation were not apparent. It is however possible that moisture transport mechanisms within the composites may have been modified as a result of hybridization. / Master of Science

Page generated in 0.0561 seconds