• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • No language data
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Even 2x2 Submatrices of a Random Zero-One Matrix

Godbole, Anant P., Johnson, Joseph A. 01 November 2004 (has links)
Consider an m x zero-one matrix A. An s x t submatrix of A is said to be even if the sum of its entries is even. In this paper, we focus on the case m = n and s = t = 2. The maximum number M(n) of even 2 x 2 submatrices of A is clearly ( 2n) 2, and corresponds to the matrix A having, e.g., all ones (or zeros). A more interesting question, motivated by Turán numbers and Hadamard matrices, is that of the minimum number m(n) of such matrices. It has recently been shown that m(n) ≥ 1/2 ( 2n) 2 - Bn 3 for some constant B. In this paper we show that if the matrix A = A n is considered to be induced by an infinite zero one matrix obtained at random, then P(E n ≤1/2( 2n) 2 - Cn 2 log n infinitely often) = 0, where E n denotes the number of even 2 x 2 submatrices of A n. Results such as these provide us with specific information about the tightness of the concentration of E n around its expected value of 1/2 ( 2n) 2.

Page generated in 0.084 seconds