• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • 1
  • Tagged with
  • 4
  • 4
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

A calibration method for laser-triangulating 3D cameras / En kalibreringsmetod för lasertriangulerande 3D-kameror

Andersson, Robert January 2008 (has links)
<p>A laser-triangulating range camera uses a laser plane to light an object. If the position of the laser relative to the camera as well as certrain properties of the camera is known, it is possible to calculate the coordinates for all points along the profile of the object. If either the object or the camera and laser has a known motion, it is possible to combine several measurements to get a three-dimensional view of the object.</p><p>Camera calibration is the process of finding the properties of the camera and enough information about the setup so that the desired coordinates can be calculated. Several methods for camera calibration exist, but this thesis proposes a new method that has the advantages that the objects needed are relatively inexpensive and that only objects in the laser plane need to be observed. Each part of the method is given a thorough description. Several mathematical derivations have also been added as appendices for completeness.</p><p>The proposed method is tested using both synthetic and real data. The results show that the method is suitable even when high accuracy is needed. A few suggestions are also made about how the method can be improved further.</p>
2

Large scale audience interaction with a Kinect sensor

Samini, Ali January 2012 (has links)
We present investigation and designing of a system that interacts with big audience, sitting in a dimmed theater environment. The goal is to automatically detect audiences and some of their actions. Test results indicate that because of low light condition we can’t rely on RGB camera footage in a dimmed environment. We use Microsoft Kinect Sensor to collect data from environment. Kinect is designed to be used with Microsoft Xbox 360 for gaming purposes. It has both RGB and Infrared depth camera. Change in amount of visible light doesn’t affect data from depth camera. Kinect is not a strong camera so it has limitations that we should deal with. Viewing angles of both cameras and depth range of Infrared camera are limited. Viewing angles of depth camera are 43° vertical and 57° horizontal. Most accurate range of depth camera is 1 meter to 4 meters from camera. Non-infrared reflective surfaces cause gaps in depth data. We evaluate possibility of using Kinect camera in a large environment with big audience. “Dome 3D theater” in Norrkoping Visualization Center C, is selected as environment to investigate and test the system. We ran some tests to find the best place and best height for camera to have most coverage. Our system works with optimized image processing algorithms that use 3D depth data instead of regular RGB or Grayscale image. We use “libfreenect”, Open Kinect library to get Kinect sensor up and running. C++ and OpenGL are used as programing languages and graphics interface, respectively. Open GLUT (OpenGL Utility Toolkit) is used for system’s user interface. It was not possible to use Dome environment for every test during the programming period so we recorded some depth footage and used for later tests. While evaluating the possibility of using Kinect in Dome environment, we realized that implementing a voting system would make a good demonstration and test application. Our system counts votes after audiences raise their hands to vote for something.
3

A calibration method for laser-triangulating 3D cameras / En kalibreringsmetod för lasertriangulerande 3D-kameror

Andersson, Robert January 2008 (has links)
A laser-triangulating range camera uses a laser plane to light an object. If the position of the laser relative to the camera as well as certrain properties of the camera is known, it is possible to calculate the coordinates for all points along the profile of the object. If either the object or the camera and laser has a known motion, it is possible to combine several measurements to get a three-dimensional view of the object. Camera calibration is the process of finding the properties of the camera and enough information about the setup so that the desired coordinates can be calculated. Several methods for camera calibration exist, but this thesis proposes a new method that has the advantages that the objects needed are relatively inexpensive and that only objects in the laser plane need to be observed. Each part of the method is given a thorough description. Several mathematical derivations have also been added as appendices for completeness. The proposed method is tested using both synthetic and real data. The results show that the method is suitable even when high accuracy is needed. A few suggestions are also made about how the method can be improved further.
4

Kalibrace snímačů pro multispektrální datovou fúzi v mobilní robotice / Sensor Calibration for Multispectral Data Fusion in Mobile Robotics

Kalvodová, Petra January 2015 (has links)
Thesis deals with data fusion and calibration of sensory system of Orpheus-X3 robot and EnvMap mapping robot. These robots are parts of Cassandra robotic system that is used for exploration of hazardous or inaccessible areas. Corrections of measured distances are determined for used laser scanners Velodyne HDL-64, Velodyne HDL-32 and range camera SwissRanger SR4000. Software MultiSensCalib has been created and is described. This software is used for determination of intrinsic parameters of heterogeneous cameras of the sensory head and for determination of mutual position and orientation of these sensors. Algorithm for data fusion of CCD camera stereo pair, thermal imager stereo pair and range camera is proposed. Achieved calibration and data-fusion parameters are evaluated by several experiments.

Page generated in 0.0458 seconds