Spelling suggestions: "subject:"rangeland"" "subject:"rangel""
31 |
Quantitative Studies on the Vegetation of the Grazing Ranges of Northern ArizonaLoftfield, J. V. Gorm, 1890- January 1924 (has links)
No description available.
|
32 |
Sensitivity of frequency and canopy cover to changes in vegetationMirreh, Mohamed Mohamud January 1981 (has links)
No description available.
|
33 |
Results of reseeding trials in the pinyon juniper region of New MexicoSpringfield, H. W. January 1949 (has links)
No description available.
|
34 |
Terrestrial survey and remotely-sensed methods for detecting the biological soil crust components of rangeland condition /Ghorbani, Ardavan Unknown Date (has links)
Two BSC based indicators for rangeland condition assessment are species composition and cover. While there is strong agreement that BSC composition is a good indicator, there is less agreement that BSC cover alone is a good indicator. Although BSC have been included in previous remotely- sensed studies, their spectral characteristics, and hence their contributions to remotely-sensed spectral signatures, are not well known. / Data collection methods were refined for suitable method selection, stratification and site characterization, and morphological/functional group classification. Cover data of BSC were collected using a 100m line-intercept method on the stratified land units and statistical analyses were based on the cover variance analyses. Spectra of BSC groups were collected and characterized for different remote sensing indices. Five grazing gradient models based on collected spectra were developed for the evaluation of BSC effect on remotely-sensed data. Both existing and newly developed remote sensing indices were examined for BSC detection. / Sampling for cover of BSC in the field showed that there is indeed a detectable change with distance from water, suggesting that BSC cover can be used as an indicator of rangeland condition, provided that appropriate stratification of the study sites is carried out prior to sampling, and spectral differences in morphological and functional groups are taken into account. / Spectral analysis of BSC components showed that different classes of organisms in the crusts have different spectral characteristics, an din particular, that the (commonly-used) perpendicular vegetation index (PD54) is not suitable for detecting BSC. On the other hand, ground-level spectral modelling showed that the Normalized Difference Vegetation Index (NDVI) and Soil Stability Index (SSI) did show a distinguishable contribution from BSC. / A procedure for detecting cover of BSC was developed for image taken during the period after an effective rain, in contrast to the normal practice of selecting images of dry surfaces for interpretation. / The most suitable interval appears to be 2-4 days after rain in late autumn, winter and early spring. Of the existing indices, the SSI is the best for estimating cover of BSC from Landsat images. However, eight new indices, specifically designed for detection of BSC were developed during the course of this work. The best results were obtained for indices using the middle-infrared bands. / These results are promising for application to rangeland monitoring and suggest that BSC cover is an important indicator of rangeland condition if appropriate stratification, classification and data-collection methods are used. The effects of BSC cover on a remotely-sensed method are considerable, and thus they can not be neglected during image interpretation. There are different phenological patterns for BSC, annual and perennial elements, thus there is the possibility for the selection of imagery based on each phenological stage to detect these elements. Application of certain indices such as the PD54 may create mis-estimation of land covers. Although some of the existing and newly developed indices had significant results for BSC cover estimation, there is a requirement for a standalone remotely-sensed method to conclude the best index. / This thesis considers various aspects of the use of ground-based methods and remote sensing of Biological Soil Crusts (BSC). They are mostly distributed in winter rainfall dominated areas such as those at Middleback Field Centre (MFC) in South Australia. They can be used potentially as an indicator of rangeland condition by estimating grazing pressure (trampling). / Thesis (PhDEnvironmentalManagement)--University of South Australia, 2007.
|
35 |
Terrestrial survey and remotely-sensed methods for detecting the biological soil crust components of rangeland condition /Ghorbani, Ardavan Unknown Date (has links)
Two BSC based indicators for rangeland condition assessment are species composition and cover. While there is strong agreement that BSC composition is a good indicator, there is less agreement that BSC cover alone is a good indicator. Although BSC have been included in previous remotely- sensed studies, their spectral characteristics, and hence their contributions to remotely-sensed spectral signatures, are not well known. / Data collection methods were refined for suitable method selection, stratification and site characterization, and morphological/functional group classification. Cover data of BSC were collected using a 100m line-intercept method on the stratified land units and statistical analyses were based on the cover variance analyses. Spectra of BSC groups were collected and characterized for different remote sensing indices. Five grazing gradient models based on collected spectra were developed for the evaluation of BSC effect on remotely-sensed data. Both existing and newly developed remote sensing indices were examined for BSC detection. / Sampling for cover of BSC in the field showed that there is indeed a detectable change with distance from water, suggesting that BSC cover can be used as an indicator of rangeland condition, provided that appropriate stratification of the study sites is carried out prior to sampling, and spectral differences in morphological and functional groups are taken into account. / Spectral analysis of BSC components showed that different classes of organisms in the crusts have different spectral characteristics, an din particular, that the (commonly-used) perpendicular vegetation index (PD54) is not suitable for detecting BSC. On the other hand, ground-level spectral modelling showed that the Normalized Difference Vegetation Index (NDVI) and Soil Stability Index (SSI) did show a distinguishable contribution from BSC. / A procedure for detecting cover of BSC was developed for image taken during the period after an effective rain, in contrast to the normal practice of selecting images of dry surfaces for interpretation. / The most suitable interval appears to be 2-4 days after rain in late autumn, winter and early spring. Of the existing indices, the SSI is the best for estimating cover of BSC from Landsat images. However, eight new indices, specifically designed for detection of BSC were developed during the course of this work. The best results were obtained for indices using the middle-infrared bands. / These results are promising for application to rangeland monitoring and suggest that BSC cover is an important indicator of rangeland condition if appropriate stratification, classification and data-collection methods are used. The effects of BSC cover on a remotely-sensed method are considerable, and thus they can not be neglected during image interpretation. There are different phenological patterns for BSC, annual and perennial elements, thus there is the possibility for the selection of imagery based on each phenological stage to detect these elements. Application of certain indices such as the PD54 may create mis-estimation of land covers. Although some of the existing and newly developed indices had significant results for BSC cover estimation, there is a requirement for a standalone remotely-sensed method to conclude the best index. / This thesis considers various aspects of the use of ground-based methods and remote sensing of Biological Soil Crusts (BSC). They are mostly distributed in winter rainfall dominated areas such as those at Middleback Field Centre (MFC) in South Australia. They can be used potentially as an indicator of rangeland condition by estimating grazing pressure (trampling). / Thesis (PhDEnvironmentalManagement)--University of South Australia, 2007.
|
36 |
Growing wild crested wheatgrass and the landscape of belonging /Conner, Lafe. January 1900 (has links)
Thesis (M.A.)--Utah State University, 2008. / Title from title screen (viewed Dec. 15, 2008). Department: History Includes bibliographical references. Archival copy available in print.
|
37 |
Long-term ecological effects of rangeland burning, grazing and browsing on vegetation and organic matter dynamicsRatsele, Clement Ratsele January 2013 (has links)
To proffer a sustainable solution to ecological degradation in rangeland ecosystems as a consequence of fire, grazing and browsing, an understanding of rangeland ecological processes is vital. Due to the complexity of ecological processes and their interrelationships, it is usually difficult or expensive to directly measure status of ecological processes. Therefore, biological and physical characteristics are often used to indicate the functionality of ecological processes and site integrity. Long-term effects of fire, grazing and browsing on characteristics of the vegetation and organic matter and their subsequent effects on selected rangelands ecosystem ecological processes was conducted at Honeydale section of the University of Fort Hare farm in the Eastern Cape Province of South Africa and Matopos Research Station in Zimbabwe. In this study, attributes of biotic community integrity (species richness, composition and diversity), soil stability (basal cover, standing dead grass biomass, tuft to tuft distance, tufts diameter, canopy distance and stem to stem distance), productivity and plant vigour (grass yield, total canopy volume, plant height, canopy height, canopy diameter, main stem diameter, sprouts diameter and number of sprouts) and hydrologic function and nutrient cycling (grass litter biomass, soil organic carbon and microbial biomass carbon) were used to estimate long-term effects of burning, grazing and browsing by goats on the functionality of ecological processes in the rangeland ecosystem. Burning did not have differential effect on grass species richness (P>0.05), woody species diversity as well as compositional percentage for D.eriatha, C.plurinodis, S.fimbriatus, A.karro and E.rigida. Burning increased decreasers and increaser II species proportions and reduced (P ≤ 0.05) grass yield, total canopy volume, tree height, canopy height main stem diameter and sprouts diameter. Long-term burning, grazing, and goats browsing had differential effects on site stability. The effects on basal cover, tuft to tuft distance, tufts diameter, canopy distance and basal distance as a consequence of long-term burning, grazing, and goats browsing were not significantly different, whereas the effects on standing dead grass biomass as a result of long-term burning frequencies were significantly different. Long-term effects of burning followed by ten-year period of fire exclusion had significantly different effects on tuft-tuft distance but did not have statistically different effects on tufts diameter, canopy distance and basal distance. Long-term burning grazing and browsing had significantly different effects on attributes of hydrologic functions and nutrient cycling in the rangeland ecosystem (grass litter biomass, SOC and BMC). Long-term effects of burning followed by ten-year period of fire exclusion had significantly different effects on grass litter biomass, and SOC. Through their effect on vegetation and organic matter characteristics, burning, grazing and browsing could influence functionality of selected rangeland ecological processes such as biological community integrity, productivity and plant vigour, site stability, hydrologic function and nutrient cycling.
|
38 |
Reseeding Desert Grassland Ranges in Southern ArizonaAnderson, Darwin, Hamilton, Louis P., Reynolds, Hudson G., Humphrey, Robert R. 07 1900 (has links)
No description available.
|
39 |
Reseeding Desert Grassland Ranges in Southern ArizonaAnderson, Darwin, Hamilton, Louis P., Reynolds, Hudson G., Humphrey, Robert R. 03 1900 (has links)
Revised
|
40 |
CHARACTERIZATION OF RANGE SITES IN THE EMPIRE VALLEY, ARIZONAAraújo Filho, João Ambrósio de January 1975 (has links)
No description available.
|
Page generated in 0.0435 seconds