• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • No language data
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Identifying Disease-Resistant and Thermal-Tolerant Genotypes in the Threatened Staghorn Coral, Acropora cervicornis

Hightshoe, Morgan V 27 April 2018 (has links)
Since the 1970s, loss of herbivores, coral bleaching, pollution, and disease epidemics have reshaped the ecological framework of coral reefs. Staghorn coral, Acropora cervicornis, was a major reef-building scleractinian coral found throughout Florida and the Caribbean that experienced unprecedented population declines primarily due to disease and coral bleaching. These two stressors are coupled; the highest coral disease prevalence occurs after periods of thermal stress caused by increased sea surface temperature. Previous research documented three disease-resistant A. cervicornis genotypes in Panama, but it is unknown if disease-resistant genotypes exist in the Florida Keys. Thermal tolerance has been found to be variable among different species of corals and is relatively unknown in A. cervicornis. To investigate disease resistance and thermal tolerance in corals collected from the Florida Keys, pathogen transmission, thermal tolerance experiments, and coral outplanting studies were conducted, along with histological work to assess the condition of coral tissues. Corals were challenged in situ with exposure to rapid tissue loss (RTL) and bleaching resistance was evaluated ex situ in temperature-controlled seawater tanks, using 39 A. cervicornis genotypes. Disease and bleaching were further characterized in the wild using outplanted colonies. In a pathogen transmission pilot study, 7 out of 39 genotypes developed signs of rapid tissue loss transmission. An expanded transmission experiment that used 12 potentially disease resistant genotypes (based on anecdotal information and results from the pilot study), all genotypes developed signs of RTL transmission. However, susceptibility was variable but not statistically different among genotypes (p>0.05), ranging from 40-100% transmission. Histological analyses revealed significant (p0.05) related to photosynthetic efficiency and tissue condition metrics. No significant differences in mortality, disease, or predation were found between disease resistant and disease susceptible genotypes in outplanting experiments (p>0.05). This study reports the first evidence that disease resistance is present in Florida A. cervicornis genotypes. The variability of disease resistance found within genotypes suggests that genotype is not the only factor influencing disease transmission. Short-term exposure to thermal stress revealed heat tolerant A. cervicornis genotypes, which corroborates with recent published studies. Taken together, these results provide insights into how Caribbean Acropora and other scleractinian species persist through multiple disease and coral bleaching events.
2

Bacterial Communities Associated with Healthy and Diseased Acropora cervicornis (Staghorn Coral) Using High-Throughput Sequencing

Walton, Charles 21 July 2017 (has links)
Coral diseases were first noted in the 1960s and 1970s and have had major impacts globally on coral reef community structures. In the Caribbean, a major outbreak of white band disease has been considered responsible for the drastic decline of Caribbean Acroporids since the 1970s. In addition to white band disease, another more recently described condition known as rapid tissue loss (RTL) has had major impacts on Acropora cervicornis populations, specifically offshore Broward County Southeast Florida. While these diseases have contributed to the population decline, determining their etiologies has been elusive. Coral diseases have been characterized by shifts in their microbial counterparts within many levels of the coral host. While some coral diseases have had specific pathogens identified, research has not been able to determine pathogens for most. Evidence points toward bacterial causes for many diseases, but due to the complexity of the coral holobiont and the interaction with the environment, elucidating the causes has proven difficult. Many studies have examined the microbiomes of specific diseases and determined some potential pathogens or at least taxa playing important roles in the disease, although none have looked at RTL. Recognizing the local affect of RTL on A. cervicornis, this study set out to gain a baseline understanding of the healthy and RTL affected microbiome of A. cervicornis. 16S rRNA gene sequencing was used to examine the microbiome of completely healthy colonies, healthy regions of diseased colonies, and the disease margin of diseased colonies. Analysis of four microbial diversity metrics revealed marked increases in diversity with respect to declining health states. Additionally, community dissimilarity analysis and analysis of differentially abundant taxa exhibited distinct microbial community structures due to coral health. Several highly abundant (Rickettsiales, Rhodobacteraceae) and a few low abundance (Bdellovibrionales) taxa were identified as primary drivers of the differences. Additionally, Piscirickettsiaceae, a known fish pathogen, was consistently associated with RTL and warrants further investigation. All of the taxa identified with in RTL have been associated with other Acroporid and non-Acroporid diseases throughout the Caribbean and the rest of the world. The consistent IV association of similar taxa for coral diseases around the world, including those found in this study, supports the recent ideas of non-specific primary pathogens. While most disease studies, coral and otherwise, aim to determine a single pathogen for a single disease, this study and others suggest there could be a multitude of organisms responsible for the disease. Therefore understanding the interactions of the coral holobiont and the environment is important to understanding coral disease. While this study reveals significant changes in the bacterial community associated with RTL as well as some potential pathogens, the relationships appear complex and perhaps at a functional level rather than merely taxonomic. Furthermore, this study did not examine viruses, fungi, or protists, which could be possible pathogens. Therefore, to further develop an understanding of RTL and many other coral diseases it will be necessary to consider additional none-bacterial members of the holobiont as well as the bacterial functions and taxa coupled with the roles of environmental factors.

Page generated in 0.0521 seconds