• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 89
  • 21
  • 6
  • 5
  • 4
  • 4
  • 4
  • 4
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • Tagged with
  • 141
  • 141
  • 141
  • 22
  • 21
  • 21
  • 21
  • 16
  • 15
  • 11
  • 10
  • 9
  • 9
  • 8
  • 7
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

The study of photophysical properties of organic-lanthanide hybrid materials and their applications

Bao, Guochen 07 August 2020 (has links)
Designing hybrid materials allows leveraging the properties of different material systems to achieve novel functions. Significant progress has been made in recent years to exploit the physicochemical properties of a new generation of hybrid materials for emerging biomedical applications. In Chapter 1, I review the recent advances in the field of dye-lanthanide hybrid materials, centring on the interface between organic dyes and inorganic lanthanide materials and investigating their photophysical and photochemical properties. Five representative dye-lanthanide hybrid material systems including lanthanide complex, dye-sensitised downshifting nanoparticles (DSNPs), dye-sensitised downconversion nanoparticles (DCNPs), dye-sensitised upconversion nanoparticles (UCNPs), and UCNPs-dye energy transfer systems have been thoroughly discussed. We highlight the key applications of dye-lanthanide hybrid materials in bioimaging, sensing, drug delivery, therapy, and cellular activity studies. In Chapter 2, I design and synthesize an ytterbium complex-based sensor for the detection of Hg2+ ions. The water-soluble ytterbium complex exhibits reversible off−on visible and NIR emission upon the binding with mercury ion. The fast response and 150 nM sensitivity of Hg2+ detection are based upon FRET and the lanthanide antenna effect. The reversible Hg2+ detection can be performed in vitro, and the binding mechanism is studied by NMR employing the motif structure in a La complex and by DFT calculations. In Chapter 3, I report a pair of stoichiometric terbium-europium dyads as molecular thermometers and study their energy transfer properties. A strategy for synthesizing hetero-dinuclear complexes that contain chemically similar lanthanides is developed. By this strategy, a pair of thermosensitive dinuclear complexes, cycTb-phEu and cycEu-phTb, was synthesized. Their structures were geometrically optimized with an internuclear distance of approximately 10.6 Å. The dinuclear complexes have sensitive temperature-dependent luminescent intensity ratios of europium and terbium emission, and temporal dimension responses over a wide temperature range (50 - 298 K and 10 - 200 K, respectively). This indicates that both dinuclear complexes are excellent self-referencing thermometers. In Chapter 4, I investigate spectral structure and intensity changes of a pair of dinuclear complexes with a europium ion on cyclen site and a lanthanum ion on phen site or vice verses (cycEu-phLa and cycLa-phEu). Though they have the same components and the same energy levels, they present different photophysical properties due to the different coordination environment. The band positions are different in the emission spectra. The emission of cycEu-phLa showed a stronger relative intensity of 5D0 7F2 transition whereas the relative intensity of 5D0 7F4 transition was weaker in comparison with cycLa-phEu. We found the cycEu-phLa have higher internal quantum efficiency while the cycEu-phLa have higher sensitizing efficiency, though they have similar external quantum yield. We determined the singlet-triplet intersystem crossing rate with values as ~108 s-1. In Chapter 5, I exploit a dye sensitised upconversion nanoparticle with highly enhanced upconversion emission. I designed and synthesized a new dye by connecting tetraphenylethene (TPE) with the cyanide NIR dye, IR783. The resultant compound (TPEO-IR783) has a quantum yield of 22.46% which is 3 times higher than that of reported UCNP sensitiser (IR806). The TPEO-IR783 exhibits a transparent window in a range of 400 nm to 600 nm, making it suitable sensitiser for upconversion nanoparticles by avoiding reabsorption. The TPEO-IR783 sensitised UCNPs show more than 200-fold upconversion emission than the reported IR806 sensitised UCNPs under the same condition. In Chapter 6, I develop an ytterbium nanoparticle-mediated upconversion system. The system enables the singlet energy transfer from sensitisers to acceptor triplet states without the requirement of intersystem crossing. I evaluate the hybrid upconversion design by IR808 and rubrene acid. While the mixture of IR808 and rubrene acid does not show any upconversion emission, the introduction of an intermediate ytterbium energy level by adding NaGdF4:Yb nanoparticles displays strongly enhanced upconversion emissions. This design bypasses the specific requirement of traditional sensitisers in TTA system, providing a wide range of opportunities in deep tissue applications. Chapter 7 is the experiment sections where details of materials, characterizations, and synthetic procedures in each chapter have been provided.
22

Optimization of rare-earth-doped fluorides for infrared lasers

Peterson, Rita Dedomenica 01 July 2000 (has links)
No description available.
23

Quantum order in heavy fermion systems

Mathur, Neil David January 1995 (has links)
No description available.
24

SOLVENT EXTRACTION OF TERVALENT LANTHANIDES WITH N-BENZOYLPHENYLHYDROXYL AMINE.

Fabara Ordoñez, Carlos Eduardo. January 1983 (has links)
No description available.
25

Synthesis, characterization, and photophysical studies of organic-lanthanide complexes

Wong, Ka-Leung, January 2006 (has links)
Thesis (Ph. D.)--University of Hong Kong, 2006. / Title proper from title frame. Also available in printed format.
26

Structure of neutron deficient nuclei near A=140

Kennedy, Gregory Garth. January 1975 (has links)
No description available.
27

Factors affecting the thin section microstructure of rare earth treated compacted/vermicular graphite cast iron

Miller, Barry L. January 1981 (has links)
Thesis (M.S.)--University of Wisconsin--Madison, 1981. / Typescript. eContent provider-neutral record in process. Description based on print version record. Includes bibliographical references (leaves 122-126).
28

Nuclear orientation of some rare-earth isotopes

Lovejoy, Carolyn Ann. January 1961 (has links)
Thesis (Ph.D.)--University of California, Berkeley, 1961. / Includes bibliographical references (p. 51-52).
29

Rare earth treated compacted/vermicular graphite cast iron

Kimura, Toru. January 1900 (has links)
Thesis (Ph. D.)--University of Wisconsin--Madison, 1980. / Typescript. Vita. eContent provider-neutral record in process. Description based on print version record. Includes bibliographical references (leaves 189-198).
30

Synthesis, photophysical and biological studies of lanthanide complexes for photodynamic therapy

Zhou, Yan 14 September 2017 (has links)
1.2\xPrior to the PDT, we have also synthesized a series of water-soluble homoleptic lanthanides (Ln3+ = Gd, Er, and Yb) sandwich (DD) di-PEGylated porphyrin complexes. The Yb complex (YbDD) has shown the same NIR emission quantum yield as the highest record Yb complex in the literature (Yb-RhB), yet, the emission intensity is double compared to the Yb-N. This implies a new thinking about the quantity measurement for biological imaging. The brightness might be the prime factor for the development of luminescence in vitro/in vivo imaging agent rather than the emission quantum yield.

Page generated in 0.0458 seconds