• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 25
  • 7
  • 4
  • 2
  • 1
  • Tagged with
  • 45
  • 45
  • 45
  • 11
  • 10
  • 9
  • 8
  • 7
  • 7
  • 7
  • 7
  • 7
  • 7
  • 7
  • 7
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Development of Modelling Techniques for Pulsed Pressure Chemical Vapour Deposition (PP-CVD)

Cave, Hadley Mervyn January 2008 (has links)
In this thesis, a numerical and theoretical investigation of the Pulsed Pressure Chemical Vapour Deposition (PP-CVD) progress is presented. This process is a novel method for the deposition of thin films of materials from either liquid or gaseous precursors. PP-CVD operates in an unsteady manner whereby timed pulsed of the precursor are injected into a continuously evacuated reactor volume. A non-dimensional parameter indicating the extent of continuum breakdown under strong temporal gradients is developed. Experimental measurements, supplemented by basic continuum simulations, reveal that spatio-temporal breakdown of the continuum condition occurs within the reactor volume. This means that the use of continuum equation based solvers for modelling the flow field is inappropriate. In this thesis, appropriate methods are developed for modelling unsteady non-continuum flows, centred on the particle-based Direct Simulation Monte Carlo (DSMC) method. As a first step, a basic particle tracking method and single processor DSMC code are used to investigate the physical mechanisms for the high precursor conversion efficiency and deposition uniformity observed in experimental reactors. This investigation reveals that at soon after the completion of the PP-CVD injection phase, the precursor particles have an approximately uniform distribution within the reactor volume. The particles then simply diffuse to the substrate during the pump-down phase, during which the rate of diffusion greatly exceeds the rate at which particles can be removed from the reactor. Higher precursor conversion efficiency was found to correlate with smaller size carrier gas molecules and moderate reactor peak pressure. An unsteady sampling routine for a general parallel DSMC method called PDSC, allowing the simulation of time-dependent flow problems in the near continuum range, is then developed in detail. Nearest neighbour collision routines are also implemented and verified for this code. A post-processing procedure called DSMC Rapid Ensemble Averaging Method (DREAM) is developed to improve the statistical scatter in the results while minimising both memory and simulation time. This method builds an ensemble average of repeated runs over small number of sampling intervals prior to the sampling point of interest by restarting the flow using either xi a Maxwellian distribution based on macroscopic properties for near equilibrium flows (DREAM-I) or output instantaneous particle data obtained by the original unsteady sampling of PDSC for strongly non-equilibrium flows (DREAM-II). The method is validated by simulating shock tube flow and the development of simple Couette flow. Unsteady PDSC is found to accurately predict the flow field in both cases with significantly reduced run-times over single processor code and DREAM greatly reduces the statistical scatter in the results while maintaining accurate particle velocity distributions. Verification simulations are conducted involving the interaction of shocks over wedges and a benchmark study against other DSMC code is conducted. The unsteady PDSC routines are then used to simulate the PP-CVD injection phase. These simulations reveal the complex flow phenomena present during this stage. The initial expansion is highly unsteady; however a quasi-steady jet structure forms within the reactor after this initial stage. The simulations give additional evidence that the collapse of the jet at the end of the injection phase results in an approximately uniform distribution of precursor throughout the reactor volume. Advanced modelling methods and the future work required for development of the PP-CVD method are then proposed. These methods will allow all configurations of reactor to be modelled while reducing the computational expense of the simulations.
12

Moment method in rarefied gas dynamics: applications to heat transfer in solids and gas-surface interactions

Mohammadzadeh, Alireza 17 November 2016 (has links)
It is well established that rarefied flows cannot be properly described by traditional hydrodynamics, namely the Navier-Stokes equations for gas flows, and the Fourier’s law for heat transfer. Considering the significant advancement in miniaturization of electronic devices, where dimensions become comparable with the mean free path of the flow, the It is well established that rarefied flows cannot be properly described by traditional hydrodynamics, namely the Navier-Stokes equations for gas flows, and the Fourier's law for heat transfer. Considering the significant advancement in miniaturization of electronic devices, where dimensions become comparable with the mean free path of the flow, the study of rarefied flows is extremely important. This dissertation includes two main parts. First, we look into the heat transport in solids when the mean free path for phonons are comparable with the length scale of the flow. A set of macroscopic moment equations for heat transport in solids are derived to extend the validity of Fourier's law beyond the hydrodynamics regime. These equations are derived such that they remain valid at room temperature, where the MEMS devices usually work. The system of moment equations for heat transport is then employed to model the thermal grating experiment, recently conducted on a silicon wafer. It turns out that at room temperature, where the experiment was conducted, phonons with high mean free path significantly contribute to the heat transport. These low frequency phonons are not considered in the classical theory, which leads to failure of the Fourier's law in describing the thermal grating experiment. In contrast, the system of moment equations successfully predict the deviation from the classical theory in the experiment, and suggest the importance of considering both low and high frequency phonons at room temperature to capture the experimental results. In the second part of this study, we look into the gas-surface interactions for conventional gas dynamics when the gas flow is rarefied. An extension to the well-known Maxwell boundary conditions for gas-surface interactions are obtained by considering velocity dependency in the reflection kernel from the surface. This extension improves the Maxwell boundary conditions by providing an extra free parameter that can be fitted to the experimental data for thermal transpiration effect in non-equilibrium flows. The velocity dependent Maxwell boundary conditions are derived for the Direct Simulation Monte Carlo (DSMC) method and the regularized 13-moment (R13) equations for conventional gas dynamics. Then, a thermal cavity is considered to test and study the effect of these boundary conditions on the flow formation in the slip and early transition regime. It turns out that using velocity dependent boundary conditions allows us to change the size and direction of the thermal transpiration force, which leads to marked changes in the balance of transpiration forces and thermal stresses in the flow. / Graduate
13

Measurements of temperature and density profiles of iodine vapor between parallel plates in the transition regime using laser induced fluorescence

Gu, Yuxing, January 2000 (has links)
Thesis (Ph. D.)--University of Missouri-Columbia, 2000. / Typescript. Vita. Includes bibliographical references (leaves 114-120). Also available on the Internet.
14

Investigation of low-pressure laser induced fluorescence for measuring temperature profiles in a rarefied gas

Leimkuehler, Thomas O. January 2000 (has links)
Thesis (Ph. D.)--University of Missouri-Columbia, 2000. / Typescript. Vita. Includes bibliographical references (leaves 112-113). Also available on the Internet.
15

Measurements of temperature and density profiles of iodine vapor between parallel plates in the transition regime using laser induced fluorescence /

Gu, Yuxing, January 2000 (has links)
Thesis (Ph. D.)--University of Missouri-Columbia, 2000. / Typescript. Vita. Includes bibliographical references (leaves 114-120). Also available on the Internet.
16

Investigation of low-pressure laser induced fluorescence for measuring temperature profiles in a rarefied gas /

Leimkuehler, Thomas O. January 2000 (has links)
Thesis (Ph. D.)--University of Missouri-Columbia, 2000. / Typescript. Vita. Includes bibliographical references (leaves 112-113). Also available on the Internet.
17

Simulation of gas dynamics, radiation and particulates in volcanic plumes on Io

Zhang, Ju 28 August 2008 (has links)
Not available / text
18

Experimental study of pressure difference phenomena in rarefied gases /

Huang, Chao-Ming, January 1996 (has links)
Thesis (Ph. D.)--University of Missouri-Columbia, 1996. / Typescript. Vita. Includes bibliographical references. Also available on the Internet.
19

Experimental study of pressure difference phenomena in rarefied gases

Huang, Chao-Ming, January 1996 (has links)
Thesis (Ph. D.)--University of Missouri-Columbia, 1996. / Typescript. Vita. Includes bibliographical references. Also available on the Internet.
20

Measurement of rarefied flows through short channels

Rasmussen, Glen Olney, January 1970 (has links)
Thesis (M.S.)--University of Wisconsin--Madison, 1970. / eContent provider-neutral record in process. Description based on print version record. Includes bibliographical references.

Page generated in 0.0874 seconds