• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • Tagged with
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

FLUORINATED RASPBERRY-LIKE PARTICLES FOR SUPERAMPHIPHOBIC COATINGS

Jiang, WEIJIE 21 October 2013 (has links)
Raspberry-like polystyrene particles were fabricated through the covalent linkage of small epoxy-functionalized polystyrene particles (PS-GMA) with large amino-functionalized polystyrene particles (PS-NH2). These covalent bonds yielded more stable and robust particle clusters than would be anticipated from non-covalent interactions. While the structures of these raspberry-like particles provided them with a dual-scale hierarchical roughness and re-entrant sites, they were further functionalized with a fluorinated random copolymer to provide them a low surface tension. The fluorinated random copolymer used to functionalize these raspberry-like particles was poly(glycidyl methacrylate20%)-co-2(perfluorooctyl)ethyl methacrylate80%)25 or P(GMA20%-co-FOEMA80%)25, where the subscript 25 denotes the total number of the respective GMA and FOEMA units, while the subscript 20% and 80% denote the molar fractions of GMA and FOEMA, respectively. The epoxy groups of the GMA units could react with the amino groups of the raspberry-like particles, thus incorporating the fluorinated polymer onto the surfaces of the raspberry-like particles. In addition, the FOEMA component provided the particles with enhanced amphiphobicity. Subsequently, these fluorinated raspberry-like particles were cast onto glass slides to demonstrate their superamphiphobic properties. These coatings exhibited superhydrophobic behavior when they were tested against water droplets. Additionally, the oil-repellency of these coatings was tested against various liquids, including diiodomethane, cooking oil, and hexadecane. The coatings exhibited superoleophobic behavior against diiodomethane and cooking oil, as well as highly oleophobic behavior against hexadecane. This work demonstrates a simple and efficient route for the fabrication of superamphiphobic surfaces. Additionally, these surfaces are among the first examples of coatings prepared via self-assembly techniques that exhibited high repellency against hexadecane. These materials could have potential in various applications that require protection of a surface against wetting by either water or oils. / Thesis (Master, Chemistry) -- Queen's University, 2013-10-18 12:36:39.039
2

Design of self-repairable superhydrophobic and switchable surfaces using colloidal particles

Puretskiy, Nikolay 06 March 2014 (has links) (PDF)
The design of functional materials with complex properties is very important for different applications, such as coatings, microelectronics, biotechnologies and medicine. It is also crucial that such kinds of materials have a long service lifetime. Unfortunately, cracks or other types of damages may occur during everyday use and some parts of the material should be changed for the regeneration of the initial properties. One of the approaches to avoid the replacement is utilization of self-healing materials. The aim of this thesis was to design a self-repairable material with superhydrophobic and switchable properties using colloidal particles. Specific goals were the synthesis of colloidal particles and the preparation of functional surfaces incorporated with the obtained particles, which would exhibit a repairable switching behavior and repairable superhydrophobicity. In order to achieve these goals, first, methods of preparation of simple and functional colloidal particles were developed. Second, the behavior of particles at surfaces of easy fusible solid materials, namely, paraffin wax or perfluorodecane, was investigated.
3

Design of self-repairable superhydrophobic and switchable surfaces using colloidal particles

Puretskiy, Nikolay 25 February 2014 (has links)
The design of functional materials with complex properties is very important for different applications, such as coatings, microelectronics, biotechnologies and medicine. It is also crucial that such kinds of materials have a long service lifetime. Unfortunately, cracks or other types of damages may occur during everyday use and some parts of the material should be changed for the regeneration of the initial properties. One of the approaches to avoid the replacement is utilization of self-healing materials. The aim of this thesis was to design a self-repairable material with superhydrophobic and switchable properties using colloidal particles. Specific goals were the synthesis of colloidal particles and the preparation of functional surfaces incorporated with the obtained particles, which would exhibit a repairable switching behavior and repairable superhydrophobicity. In order to achieve these goals, first, methods of preparation of simple and functional colloidal particles were developed. Second, the behavior of particles at surfaces of easy fusible solid materials, namely, paraffin wax or perfluorodecane, was investigated.

Page generated in 0.0426 seconds