• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4
  • Tagged with
  • 4
  • 4
  • 4
  • 4
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

The Graphs of HU+00E4ggkvist & Hell

Roberson, David E. January 2008 (has links)
This thesis investigates HU+00E4ggkvist & Hell graphs. These graphs are an extension of the idea of Kneser graphs, and as such share many attributes with them. A variety of original results on many different properties of these graphs are given. We begin with an examination of the transitivity and structural properties of HU+00E4ggkvist & Hell graphs. Capitalizing on the known results for Kneser graphs, the exact values of girth, odd girth, and diameter are derived. We also discuss subgraphs of HU+00E4ggkvist & Hell graphs that are isomorphic to subgraphs of Kneser graphs. We then give some background on graph homomorphisms before giving some explicit homomorphisms of HU+00E4ggkvist & Hell graphs that motivate many of our results. Using the theory of equitable partitions we compute some eigenvalues of these graphs. Moving on to independent sets we give several bounds including the ratio bound, which is computed using the least eigenvalue. A bound for the chromatic number is given using the homomorphism to the Kneser graphs, as well as a recursive bound. We then introduce the concept of fractional chromatic number and again give several bounds. Also included are tables of the computed values of these parameters for some small cases. We conclude with a discussion of the broader implications of our results, and give some interesting open problems.
2

The Graphs of HU+00E4ggkvist & Hell

Roberson, David E. January 2008 (has links)
This thesis investigates HU+00E4ggkvist & Hell graphs. These graphs are an extension of the idea of Kneser graphs, and as such share many attributes with them. A variety of original results on many different properties of these graphs are given. We begin with an examination of the transitivity and structural properties of HU+00E4ggkvist & Hell graphs. Capitalizing on the known results for Kneser graphs, the exact values of girth, odd girth, and diameter are derived. We also discuss subgraphs of HU+00E4ggkvist & Hell graphs that are isomorphic to subgraphs of Kneser graphs. We then give some background on graph homomorphisms before giving some explicit homomorphisms of HU+00E4ggkvist & Hell graphs that motivate many of our results. Using the theory of equitable partitions we compute some eigenvalues of these graphs. Moving on to independent sets we give several bounds including the ratio bound, which is computed using the least eigenvalue. A bound for the chromatic number is given using the homomorphism to the Kneser graphs, as well as a recursive bound. We then introduce the concept of fractional chromatic number and again give several bounds. Also included are tables of the computed values of these parameters for some small cases. We conclude with a discussion of the broader implications of our results, and give some interesting open problems.
3

Independent Sets and Eigenspaces

Newman, Michael William January 2004 (has links)
The problems we study in this thesis arise in computer science, extremal set theory and quantum computing. The first common feature of these problems is that each can be reduced to characterizing the independent sets of maximum size in a suitable graph. A second common feature is that the size of these independent sets meets an eigenvalue bound due to Delsarte and Hoffman. Thirdly, the graphs that arise belong to association schemes that have already been studied in other contexts. Our first problem involves covering arrays on graphs, which arises in computer science. The goal is to find a smallest covering array on a given graph <i>G</i>. It is known that this is equivalent to determining whether <i>G</i> has a homomorphism into a <i>covering array graph</i>, <i>CAG(n,g)</i>. Thus our question: Are covering array graphs cores? A covering array graph has as vertex set the partitions of <i>{1,. . . ,n}</i> into <i>g</i> cells each of size at least <i>g</i>, with two vertices being adjacent if their meet has size <i>g<sup>2</sup></i>. We determine that <i>CAG(9,3)</i> is a core. We also determine some partial results on the family of graphs <i>CAG(g<sup>2</sup>,g)</i>. The key to our method is characterizing the independent sets that meet the Delsarte-Hoffman bound---we call these sets <i>ratio-tight</i>. It turns out that <i>CAG(9,3)</i> sits inside an association scheme, which will be useful but apparently not essential. We then turn our attention to our next problem: the Erdos-Ko-Rado theorem and its <i>q</i>-analogue. We are motivated by a desire to find a unifying proof that will cover both versions. The EKR theorem gives the maximum number of pairwise disjoint <i>k</i>-sets of a fixed <i>v</i>-set, and characterizes the extremal cases. Its <i>q</i>-analogue does the same for <i>k</i>-dimensional subspaces of a fixed <i>v</i>-dimensional space over <i>GF(q)</i>. We find that the methods we developed for covering array graphs apply to the EKR theorem. Moreover, unlike most other proofs of EKR, our argument applies equally well to the <i>q</i>-analogue. We provide a proof of the characterization of the extremal cases for the <i>q</i>-analogue when <i>v=2k</i>; no such proof has appeared before. Again, the graphs we consider sit inside of well-known association schemes; this time the schemes play a more central role. Finally, we deal with the problem in quantum computing. There are tasks that can be performed using quantum entanglement yet apparently are beyond the reach of methods using classical physics only. One particular task can be solved classically if and only if the graph &Omega;(<i>n</i>) has chromatic number <i>n</i>. The graph &Omega;(<i>n</i>) has as vertex set the set of all <i>?? 1</i> vectors of length <i>n</i>, with two vertices adjacent if they are orthogonal. We find that <i>n</i> is a trivial upper bound on the chromatic number, and that this bound holds with equality if and only if the Delsarte-Hoffman bound on independent sets does too. We are thus led to characterize the ratio-tight independent sets. We are then able to leverage our result using a recursive argument to show that <i>&chi;</i>(&Omega;(<i>n</i>)) > <i>n</i> for all <i>n</i> > 8. It is notable that the reduction to independent sets, the characterization of ratio-tight sets, and the recursive argument all follow from different proofs of the Delsarte-Hoffman bound. Furthermore, &Omega;(<i>n</i>) also sits inside a well-known association scheme, which again plays a central role in our approach.
4

Independent Sets and Eigenspaces

Newman, Michael William January 2004 (has links)
The problems we study in this thesis arise in computer science, extremal set theory and quantum computing. The first common feature of these problems is that each can be reduced to characterizing the independent sets of maximum size in a suitable graph. A second common feature is that the size of these independent sets meets an eigenvalue bound due to Delsarte and Hoffman. Thirdly, the graphs that arise belong to association schemes that have already been studied in other contexts. Our first problem involves covering arrays on graphs, which arises in computer science. The goal is to find a smallest covering array on a given graph <i>G</i>. It is known that this is equivalent to determining whether <i>G</i> has a homomorphism into a <i>covering array graph</i>, <i>CAG(n,g)</i>. Thus our question: Are covering array graphs cores? A covering array graph has as vertex set the partitions of <i>{1,. . . ,n}</i> into <i>g</i> cells each of size at least <i>g</i>, with two vertices being adjacent if their meet has size <i>g<sup>2</sup></i>. We determine that <i>CAG(9,3)</i> is a core. We also determine some partial results on the family of graphs <i>CAG(g<sup>2</sup>,g)</i>. The key to our method is characterizing the independent sets that meet the Delsarte-Hoffman bound---we call these sets <i>ratio-tight</i>. It turns out that <i>CAG(9,3)</i> sits inside an association scheme, which will be useful but apparently not essential. We then turn our attention to our next problem: the Erdos-Ko-Rado theorem and its <i>q</i>-analogue. We are motivated by a desire to find a unifying proof that will cover both versions. The EKR theorem gives the maximum number of pairwise disjoint <i>k</i>-sets of a fixed <i>v</i>-set, and characterizes the extremal cases. Its <i>q</i>-analogue does the same for <i>k</i>-dimensional subspaces of a fixed <i>v</i>-dimensional space over <i>GF(q)</i>. We find that the methods we developed for covering array graphs apply to the EKR theorem. Moreover, unlike most other proofs of EKR, our argument applies equally well to the <i>q</i>-analogue. We provide a proof of the characterization of the extremal cases for the <i>q</i>-analogue when <i>v=2k</i>; no such proof has appeared before. Again, the graphs we consider sit inside of well-known association schemes; this time the schemes play a more central role. Finally, we deal with the problem in quantum computing. There are tasks that can be performed using quantum entanglement yet apparently are beyond the reach of methods using classical physics only. One particular task can be solved classically if and only if the graph &Omega;(<i>n</i>) has chromatic number <i>n</i>. The graph &Omega;(<i>n</i>) has as vertex set the set of all <i>± 1</i> vectors of length <i>n</i>, with two vertices adjacent if they are orthogonal. We find that <i>n</i> is a trivial upper bound on the chromatic number, and that this bound holds with equality if and only if the Delsarte-Hoffman bound on independent sets does too. We are thus led to characterize the ratio-tight independent sets. We are then able to leverage our result using a recursive argument to show that <i>&chi;</i>(&Omega;(<i>n</i>)) > <i>n</i> for all <i>n</i> > 8. It is notable that the reduction to independent sets, the characterization of ratio-tight sets, and the recursive argument all follow from different proofs of the Delsarte-Hoffman bound. Furthermore, &Omega;(<i>n</i>) also sits inside a well-known association scheme, which again plays a central role in our approach.

Page generated in 0.2911 seconds