81 |
Contribution à l'étude du bruit dans les amplificateurs Raman /Bristiel, Bruno, January 1900 (has links)
Thèse de doctorat--Électronique et communications--Paris--ENST, 2006. / Notes bibliogr. Résumé.
|
82 |
Diffusion hyper Rayleigh des assemblages moléculairesRevillod, Guillaume Brevet, Pierre-François January 2006 (has links) (PDF)
Reproduction de : Thèse de doctorat : Physique : Lyon 1 : 2006. / Titre provenant de l'écran titre. 115 réf. bibliogr.
|
83 |
Parallel adaptive finite element methods for problems in natural convectionPeterson, John William, Ph. D. 28 September 2012 (has links)
Numerical simulations of combined buoyant and surface tension driven flow, also known as Rayleigh-Bénard-Marangoni (RBM) convection are conducted for heated fluid layers of small aspect ratio (defined as the ratio of the horizontal extent of the domain divided by the depth of the fluid) in square cross-section containers. A particular non-dimensionalization of the governing equations is developed in which the aspect ratio of the domain appears as a continuous parameter. The simulations extend and enhance existing experimental studies of the RBM convection phenomenon by mapping continuous solution branches in aspect ratio and Marangoni number parameter space. Key implementation aspects of the development of the adaptive mesh refinement (AMR) library libMesh are discussed, and a series of simulations of the RBM problem with a stick-slip boundary condition demonstrate the suitability of AMR for computing these flows. / text
|
84 |
A Rayleigh wave dispersion technique for geoexploration /Yu, Thiann-R., 1933- January 1974 (has links)
No description available.
|
85 |
Simultaneous inversion of Rayleigh phase velocity and attenuation for near-surface site characterizationLai, Carlo Giovanni 05 1900 (has links)
No description available.
|
86 |
Laser ultrasonic techniques to determine the influence of geometric features on Rayleigh wavesBruttomesso, Douglas Allen 12 1900 (has links)
No description available.
|
87 |
Rayleigh Damped Magnetic Resonance ElastograpyMcGarry, Matthew January 2008 (has links)
A three-dimensional, incompressible, Rayleigh damped magnetic resonance elastography (MRE) material property reconstruction algorithm capable of reconstructing the spatial distribution of both the real and imaginary parts of the shear modulus, density and bulk modulus from full-field MR-detected harmonic motion data was developed. The algorithm uses a subzone-based implementation of motion error minimization techniques, using 27 hexahedral finite elements, and is written in FORTRAN to run on high performance distributed computing systems. The theory behind the methods used is presented in a form that is directly applicable to the code's structure, to serve as a reference for future research building on this algorithm. Globally defined Rayleigh damping parameter reconstructions using simulated data showed that it is possible to reconstruct the correct combination of Rayleigh parameters under noise levels comparable to MR measurements. The elastic wave equation is used to demonstrate that use of a one parameter damping model to fit a Rayleigh damped material can lead to artefacts in the reconstructed damping parameter images, a prediction that is verified using simulated reconstructions. Initial results using MR-detected motion data from both gelatine phantoms and in-vivo cases produced good reconstructions of real shear modulus, as well as showing promise for successful imaging of damping properties. An initial investigation into an alternative elemental basis function approach to supporting the material property distribution produced some promising results, as well as highlighting some significant issues with large variations across the elements.
|
88 |
Fast Power Allocation Algorithms for Adaptive MIMO Systems.Chung, Jong-Sun January 2009 (has links)
Recent research results have shown that the MIMO wireless communication architecture is a promising approach to achieve high bandwidth efficiencies.
MIMO wireless channels can be simply defined as a link for which both the
transmitting and receiving ends are equipped with multiple antenna elements.
Adaptive modulation and power allocation could be used to further improve the performance of MIMO systems.
This thesis focuses on developing a fast and high performance power allocation algorithm. Three power allocation algorithms are proposed in this thesis and their performances are compared in various system sizes and transceiver architectures. Among the three algorithms proposed in this thesis, the fast algorithm may be considered as the best power allocation algorithm since the performance of the fast algorithm is almost as good as the fullsearch (optimal)algorithm and the mean processing time is considerably less than the fullsearch algorithm. The fast algorithm achieves about 97.6% agreement with the optimal throughput on average. In addition, the time taken to find the power scaling factors using the fullsearch algorithm is about 2300 times longer than the processing time of the fast algorithm in a 6 x 6 system when the SNR is 20dB.
As an extension to the power allocation process, excess power allocation methods are introduced. Excess power is the unused power during the power
allocation process. The power allocation algorithm allocates power to each received SNR to maximize the throughput of the system whereas the excesspower allocation distributes the excess power to each SNR to improve both the instantaneous and temporal behavior of the system. Five different excess power allocation methods are proposed in this thesis. These methods were simulated in the Rayleigh fading channel with different Doppler frequencies, fD = 10Hz,50Hz and 100Hz, where the ACF of the channel coefficients are given by the Jakes' model. The equal BER improvement method showed a slightly better performance than the other methods. The equal BER improvement method enables the system to maintain the power scaling factors without sacrificing QoS for 19.6 ms on average when the maximum Doppler shift is 10Hz.
|
89 |
Distributed Optical Fiber Vibration Sensor Based on Rayleigh BackscatteringQin, Zengguang 01 May 2013 (has links)
This thesis includes studies of developing distributed optical fiber vibration sensor based on Rayleigh backscattering with broad frequency response range and high spatial resolution.
Distributed vibration sensor based on all-polarization-maintaining configurations of the phase-sensitive optical time domain reflectometry (OTDR) is developed to achieve high frequency response and spatial resolution. Signal fading and noise induced by polarization change can be mitigated via polarization-maintaining components. Pencil-break event is tested as a vibration source and the layout of the sensing fiber part is designed for real applications. The spatial resolution is 1m and the maximum distance between sensing fiber and vibration event is 18cm.
Wavelet denoising method is introduced to improve the performance of the distributed vibration sensor based on phase-sensitive OTDR in standard single-mode fiber. Noise can be reduced more effectively by thresholding the wavelet coefficient. Sub-meter spatial resolution is obtained with a detectable frequency up to 8 kHz.
A new distributed vibration sensor based on time-division multiplexing (TDM) scheme is also studied. A special probe waveform including a narrow pules and a quasi-continuous wave can combine the conventional phase-sensitive OTDR system and polarization diversity scheme together in one single-mode fiber without crosstalk. Position and frequency of the vibration can be determined by these two detection systems consecutively in different time slots. Vibration event up to 0.6 MHz is detected with 1m spatial resolution along a 680m single-mode sensing fiber.
Continuous wavelet transform (CWT) is investigated to study the non-stationary vibration events measured by our phase OTDR system. The CWT approach can access both frequency and time information of the vibration event simultaneously. Distributed vibration measurements of 500Hz and 500Hz to 1 kHz sweep events over 20 cm fiber length are demonstrated using a single-mode fiber.
Optical frequency-domain reflectometry (OFDR) for vibration sensing is proposed for the first time. The local Rayleigh backscatter spectrum shift in time sequence could be used to determine dynamic strain information at a specific position of the vibrated state with respect to that of the non-vibrated state. Measurable frequency range of 0-32 Hz with the spatial resolution of 10 cm is demonstrated along a 17 m fiber.
|
90 |
Numerical solutions for acoustic Rayleigh wave scattering in discontinous media.Munasinghe, Mohan, 1945- January 1973 (has links)
No description available.
|
Page generated in 0.0405 seconds