• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

The Study and Implementation of Intracavity Frequency-Doubled Blue/Green Lasers

Huang, Shan-Yu 26 June 2001 (has links)
Because compact solid-state blue/green lasers can generate high power, and short wavelength radiation, it is applied in micromaching, laser display, underwater ranging, and so forth. It is a very cost-effective approach to develop such lasers, if the laser output characteristics can be estimated precisely using software simulation. The purpose of this study is to use an optics software GLAD (General Laser Analysis and Design) to model our intracavity frequency-doubled blue/green lasers. The GLAD software considers the wave nature of laser, such as dispersion and diffraction. Moreover, it employs a modular design in modeling linear or nonlinear optical components. In order to get more precised estimation of the laser output characteristics of a quasi-three-level laser, the laser model in GLAD was modified to take into account the reabsorption loss in gain medium. In our experiment, blue/green microchip lasers were developed. We used a 3W LD to pump a quasi-three-level laser with the Nd:YAG crystal as gain medium and KNbO3 crystal as the intracavity SHG crystal for the generation of blue laser. The laser generates 17.6 mW of blue power with a cavity length of 4 mm. With almost the same structure except using Nd:YVO4 crystal as gain medium and KTP crystal as the intracavity SHG crystal for generation of green laser, the laser produces 627 mW of green power with a cavity length of 6 mm.
2

Intracavity Frequency-Doubled and Passively Q-Switched Blue Laser

Weng, Yi-Lung 30 June 2000 (has links)
The purpose of this study is to develop a solid-state blue laser which has advantages of high power, short wavelength, and compact. It can be applied in micromaching, LIDAR, underwater ranging, biochemical techniques, and so forth. We increased the peak power of the laser effectively by a low-cost, small, and easy-use passive Q-switching technique. In addition, intracavity frequency-doubling is an economic way to achieve non-linear frequency conversion for blue generation. By integrating of these two techniques, we develop a compact all solid-state high-power blue laser with 83 W peak power at 473 nm. Restricted to reabsorption loss, the optical to optical conversion efficiency of 4F3/2 ¡÷ 4I9/2 quasi-three-level laser is lower than 4F3/2 ¡÷ 4I11/2 four-level laser for Nd:YAG crystal. The reabsorption loss will change with the temperature variation of the gain medium, it enormously affects to the performance and stability of quasi-three-level lasers. Therefore, in addition to make systematic studies of the conversion efficiency of KNbO3, BBO, LBO as the intracavity SHG crystals for generation of high-power blue laser, we use the numerical analysis to investigate the influence of reabsorption loss to quasi-three-level passive Q-switching laser. At present, blue laser with peak power of 83 W and pulse width of 10.6 ns was generated as a result. To our knowledge, the compact all solid-state high-power pulsed blue laser is demonstrated for the first time by integrating of passive Q-switching and intracavity frequency-doubling simultaneously.

Page generated in 0.0899 seconds