1 |
Molecular-Level Modeling of Proton Transport in Aqueous Systems and Polymer Electrolyte Membranes: A Reactive Molecular Dynamics StudyEsai Selvan, Myvizhi 01 December 2010 (has links)
Proton exchange membrane (PEM) fuel cells are an eco-friendly power source that has great potential to reduce our oil dependence for our stationary and transportation applications. In order to make PEM fuel cells an economically viable option, further effort is needed to improve proton conduction under wide operating conditions and reduce the cost of production. Design and synthesis of novel membranes that have superior characteristics require a fundamental molecular-level understanding of the relationship between the polymer chemistry, water content and proton conduction. The performance of a fuel cell is influenced by the electrochemical and molecular/proton transport processes that occur at the catalytic sites in the electrode/electrolyte interface. Therefore, understanding the molecular-level details of proton transport and structure of the multi-phase interfaces is critical.
This work is subdivided into two main tasks. The first task is to model membrane/water vapor interfaces and to study their morphology and the transport properties of water and hydronium ions. Classical molecular dynamics simulation is used as the modeling tool for the characterization of the interface. The second task is to model proton transport through the aqueous domains of PEM. Such a model is inherently challenging since proton transport occurs through a combination of structural and vehicular diffusions that are associated with disparate time scales. Toward this end, we have developed and implemented a new reactive molecular dynamics algorithm to model the structural diffusion of proton that involves breaking and forming of covalent bonds. The proton transport through aqueous channels in PEM is governed by acidity and confinement. Therefore, systems in which the acidity and confinement can be independently varied, including bulk water, aqueous hydrochloric acid solutions and water confined in carbon nanotubes are also examined in addition to the application in PEM.
We have developed an understanding of how acidity and confinement independently impact proton transport. The correlation between the two components of charge diffusion and their contribution to the total charge diffusion has also been explored for a basic understanding of the proton transport mechanisms. These studies will eventually help us establish the correlation between the morphology of the membrane and proton conduction.
|
2 |
Developing Reactive Molecular Dynamics for Understanding Polymer Chemical KineticsSmith, Kenneth D. 01 May 2009 (has links)
One of the challenges in understanding polymer flammability is the lack of information about microscopic events that lead to macroscopically observed species, and Reactive Molecular Dynamics is a promising approach to obtain this crucially needed information. The development of a predictive method for condensed-phase reaction kinetics can provide significant insight into polymer ammability, thus helping guide future synthesis of fire-resistant polymers. Through this dissertation, a new reactive forcefield, RMDff, and Reactive Molecular Dynamics program, RxnMD, have been developed and used to simulate such material chemistry. It is necessary to have accurate description of chemical kinetics to describe quantitative chemical kinetics. Typical equilibrium forcefields are inadequate for describing chemical reactions due to the inability to represent bonding transformations. This issue was resolved by developing a new method, RMDff, that allows standard equilibrium forcfields to describe reactive transitions. The chemical reactions are described by employing switching functions that permit smooth transitions between the reactant and product descriptions available from traditional forcefields. Because all of the chemical motions are described, a complete potential energy surface is obtained for the course of the reaction. Descriptions of scission, addition/beta-scission, and abstraction reactions were developed for hydrocarbon species. Reactive potentials were developed using a representative reaction involving small molecules. It is shown that the overall geometric and energetic changes are transferable to larger and substituted molecules. The main source of error found in RMDff resulted from errors within the equilibrium forcefield descriptions. In order to simulate the chemical kinetics, it was necessary to create a molecular dynamics program that could implement the reactions from RMDff. RxnMD was developed as a new C++-based Reactive Molecular Dynamics code to simulate the dynamics using RMDff. Polymer kinetics were predicted for high-density polyethylene and used to test the method and code. Conformational changes and polymer length in the initial polyethylene molecules did not significantly alter the backbone decomposition kinetics. The results also revealed that the backbone carbon-carbon bonds could break with an activation energy approximately 100 kJ/mol below the carbon-carbon bond dissociation energy. This decrease was believed to occur from intramolecular polymer stress, which is relieved via backbone scission. Such stress was also observed to increase the beta-scission reaction rate at high temperatures, apparently because the scission reaction alone is not always sufficient to remove the energy associated with the polymer stress concentrated near the scission location. Finally, the RMD method was also shown to be transferable and applicable in describing the decomposition of novel fire-resistant polymers.
|
3 |
Application of Emerging Computational Chemistry Tools to the Study of the Kinetics and Dynamics of Chemical Systems of Interest in Combustion and CatalysisGrajales Gonzalez, Edwing 21 August 2023 (has links)
Despite comprehensive studies addressing the chemical kinetics of butanol isomers,
relevant uncertainties associated with the emissions of relevant pollutants
persists. Also, a lack of chemistry knowledge of processes designed to produce
biofuels limits their implementation at industrial scales. Therefore, the first objective
of this thesis was to use cutting-edge kinetic theories to calculate rate constants
of propen-2-ol, 1-pronenol, and vinyl alcohol keto-enol tautomerizations,
which account for the production of the harmful carbonyl species. The second
objective was to use the predictive capabilities of dynamic theories to reveal new
chemistry of syngas oxy-combustion in supercritical CO2 and complexities of the
zeolite dealumination, two processes involved in coal and biomass conversion.
Rate constants computations considered transition state theory with variational
effects, tunneling correction, and multistructural torsional anharmonicity. The
study also included pressure effects by using and improving the system-specific
quantum Rice-Ramsperger-Kassel/modified strong collision model. The atomistic
simulations used ReaxFF force fields in hydrogen/oxygen/carbon monoxide/
carbon dioxide mixtures to represent the syngas system and an MFI zeolite
with different water loading to model the dealumination. The results show
that the studied assisted tautomerizations have much lower energy barriers than
the unimolecular process. However, the “catalytic” effect is efficient only if the
partner molecule is at high concentrations. Pressure effects are pronounced in the chemically activated tautomerizations, and the improved algorithm to compute
pressure-dependent rate constants overcomes the initial difficulties associated
with its application to C3 or larger molecules at temperatures above 800-1000
K. Reactive molecular dynamics simulations revealed the role of CO2 as an initiator
in the syngas oxy-combustion and a new step involving the formation of
formic acid. Those simulations for the zeolite dealumination process also showed
that proton transfer, framework flexibility, and aluminum dislodging mediated
by silicon reactions are complex dynamic phenomena determining the process.
These aspects complement the dealumination theory uncovered so far and establish
new paths in the study of water-zeolite interactions. Overall, the rate
constants computed in this work reduce relevant uncertainties in the chemical
kinetic mechanisms of alcohol oxidation, and the molecular dynamics simulations
broaden the chemical knowledge of processes aimed at the utilization of alternative
energy resources.
|
Page generated in 0.0573 seconds