• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • No language data
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Three-Phase Generation Using Reactive Networks

Davenport, Tattiana Karina Coleman 01 March 2015 (has links)
Household appliances utilize single-phase motors to perform everyday jobs whether it is to run a fan in an air conditioner or the compressor in a refrigerator. With the movement of the world going “green” and trying to make everything more efficient, it is a logical step to start with the items that we use every day. This can be done by replacing single-phase motors with three-phase motors in household appliances. Three-phase motors are 14% more efficient than single-phase motors when running at full load and typically cost less over a large range of sizes [1]. One major downside of incorporating three-phase motors in household appliance is that three-phase power is not readily available in homes. With the motor replacement, a single to three-phase converter is necessary to convert the single-phase wall power into the required three-phase input of the motor. One option is active conversion, which uses switches and introduces different stages that produce power loss [2]. An alternative solution is passive conversion that utilizes the resistances within the motor windings along with additional capacitors and inductors, which in theory are lossless. This study focuses on three different single to three-phase passive converters to run both wye and delta-connected three-phase induction motors, and a possible third winding configuration that utilizes one of the three converters. There will be an emphasis on proving the equivalency of two converters, one proposed by Stuart Marinus and Michel Malengret [11] and the other by Otto Smith [12]. Sensitivity analysis is performed to study the effects of variation of torque and converter component tolerances on the system.

Page generated in 0.0747 seconds