• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • No language data
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Dynamic Classification Using the Adaptive Competitive Algorithm

Deldadehasl, maryam 01 December 2023 (has links) (PDF)
The Vector Quantization (VQ) model proposes a powerful solution for data clustering. Its design indicates a specific combination of concepts from machine learning and dynamical systems theory to classify input data into distinct groups. The model evolves over time to better match the distribution of the input data. This adaptive feature is a strength of the model, as it allows the cluster centers to shift according to the input patterns, effectively quantizing the data distribution. It is a gradient dynamical system, using the energy function V as its Lyapunov function, and thus possesses properties of convergence and stability. These characteristics make the VQ model a promising tool for complex data analysis tasks, including those encountered in machine learning, data mining, and pattern recognition.In this study, we have applied the dynamic model to the "Breast Cancer Wisconsin Diagnostic" dataset, a comprehensive collection of features derived from digitized images of fine needle aspirate (FNA) of breast masses. This dataset, comprising various diagnostic measurements related to breast cancer, poses a unique challenge for clustering due to its high dimensionality and the critical nature of its application in medical diagnostics. By employing the model, we aim to demonstrate its efficacy in handling complex, multidimensional data, especially in the realm of medical pattern recognition and data mining. This integration not only highlights the model's versatility in different domains but also showcases its potential in contributing significantly to medical diagnostics, particularly in breast cancer identification and classification.

Page generated in 0.1375 seconds