• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Métodos de segmentação musical baseados em descritores sonoros / Musical segmentation methods based on sound descriptors

Pires, André Salim 20 June 2011 (has links)
Esta dissertação apresenta um estudo comparativo de diferentes métodos computacionais de segmentação estrutural musical, onde o principal objetivo é delimitar fronteiras de seções musicais em um sinal de áudio, e rotulá-las, i.e. agrupar as seções encontradas que correspondem a uma mesma parte musical. São apresentadas novas propostas para segmentação estrutural nãosupervisionada, incluindo métodos para processamento em tempo real, alcançando resultados com taxas de erro inferiores a 12%. O método utilizado compreende um estudo dos descritores sonoros e meios de modelá-los temporalmente, uma exposição das técnicas computacionais de segmentação estrutural e novos métodos de avaliação dos resultados que penalizam tanto a incorreta detecção das fronteiras quanto o número incorreto de rótulos encontrados. O desempenho de cada técnica computacional é calculado utilizando diferentes conjuntos de descritores sonoros e os resultados são apresentados e analisados tanto quantitativa quanto qualitativamente. / A comparative study of different music structural segmentation methods is presented, where the goal is to delimit the borders of musical sections and label them, i.e. group the sections that correspond to the same musical part. Novel proposals for unsupervised segmentation are presented, including methods for real-time segmentation, achieving expressive results, with error ratio less then 12%. Our method consists of a study of sound descriptors, an exposition of the computational techniques for structural segmentation and the description of the evaluation methods utilized, which penalize both incorrect boundary detection and incorrect number of labels. The performance of each technique is calculated using different sound descriptor sets and the results are presented and analysed both from quantitative and qualitative points-of-view.
2

Métodos de segmentação musical baseados em descritores sonoros / Musical segmentation methods based on sound descriptors

André Salim Pires 20 June 2011 (has links)
Esta dissertação apresenta um estudo comparativo de diferentes métodos computacionais de segmentação estrutural musical, onde o principal objetivo é delimitar fronteiras de seções musicais em um sinal de áudio, e rotulá-las, i.e. agrupar as seções encontradas que correspondem a uma mesma parte musical. São apresentadas novas propostas para segmentação estrutural nãosupervisionada, incluindo métodos para processamento em tempo real, alcançando resultados com taxas de erro inferiores a 12%. O método utilizado compreende um estudo dos descritores sonoros e meios de modelá-los temporalmente, uma exposição das técnicas computacionais de segmentação estrutural e novos métodos de avaliação dos resultados que penalizam tanto a incorreta detecção das fronteiras quanto o número incorreto de rótulos encontrados. O desempenho de cada técnica computacional é calculado utilizando diferentes conjuntos de descritores sonoros e os resultados são apresentados e analisados tanto quantitativa quanto qualitativamente. / A comparative study of different music structural segmentation methods is presented, where the goal is to delimit the borders of musical sections and label them, i.e. group the sections that correspond to the same musical part. Novel proposals for unsupervised segmentation are presented, including methods for real-time segmentation, achieving expressive results, with error ratio less then 12%. Our method consists of a study of sound descriptors, an exposition of the computational techniques for structural segmentation and the description of the evaluation methods utilized, which penalize both incorrect boundary detection and incorrect number of labels. The performance of each technique is calculated using different sound descriptor sets and the results are presented and analysed both from quantitative and qualitative points-of-view.

Page generated in 0.1073 seconds