• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Human brains and virtual realities : Computer-generated presence in theory and practice / Mänskliga hjärnor och virtuella verkligheter : Datorgenererad närvaro i teori och praktik

Sjölie, Daniel January 2013 (has links)
A combined view of the human brain and computer-generated virtual realities is motivated by recent developments in cognitive neuroscience and human-computer interaction (HCI). The emergence of new theories of human brain function, together with an increasing use of realistic human-computer interaction, give reason to believe that a better understanding of the relationship between human brains and virtual realities is both possible and valuable. The concept of “presence”, described as the subjective feeling of being in a place that feels real, can serve as a cornerstone concept in the development of such an understanding, as computer-generated presence is tightly related to how human brains work in virtual realities. In this thesis, presence is related both to theoretical discussions rooted in theories of human brain function, and to measurements of brain activity during realistic interaction. The practical implications of such results are further developed by considering potential applications. This includes the development and evaluation of a prototype application, motivated by presented principles. The theoretical conception of presence in this thesis relies on general principles of brain function, and describes presence as a general cognitive function, not specifically related to virtual realities. Virtual reality (VR) is an excellent technology for investigating and taking advantage of all aspects of presence, but a more general interpretation allows the same principles to be applied to a wide range of applications. Functional magnetic resonance imaging (fMRI) was used to study the working human brain in VR. Such data can inform and constrain further discussion about presence. Using two different experimental designs we have investigated both the effect of basic aspects of VR interaction, as well as the neural correlates of disrupted presence in a naturalistic environment. Reality-based brain-computer interaction (RBBCI) is suggested as a concept for summarizing the motivations for, and the context of, applications building on an understanding of human brains in virtual realities. The RBBCI prototype application we developed did not achieve the set goals, but much remains to be investigated and lessons from our evaluation point to possible ways forward. A developed use of methods and techniques from computer gaming is of particular interest. / Ett kombinerat perspektiv på den mänskliga hjärnan och datorgenererade virtuella verkligheter motiveras av den senaste utvecklingen inom kognitiv neurovetenskap och människa-datorinteraktion (MDI). Framväxten av nya teorier om den mänskliga hjärnan, tillsammans med en ökande användning av realistisk människa-datorinteraktion, gör det troligt att en bättre förståelse för relationen mellan mänskliga hjärnor och virtuella verkligheter är både möjlig och värdefull. Begreppet "närvaro", som i detta sammanhang beskrivs som den subjektiva känslan av att vara på en plats som känns verklig, kan fungera som en hörnsten i utvecklingen av en sådan förståelse, då datorgenererad närvaro är tätt kopplat till hur mänskliga hjärnor fungerar i virtuella verkligheter. I denna avhandling kopplas närvaro både till teoretiska diskussioner grundade i teorier om den mänskliga hjärnan, och till mätningar av hjärnans aktivitet under realistisk interaktion. De praktiska konsekvenserna av sådana resultat utvecklas vidare med en närmare titt på potentiella tillämpningar. Detta inkluderar utveckling och utvärdering av en prototypapplikation, motiverad av de presenterade principerna. Den teoretiska diskussionen av närvaro i denna avhandling bygger på allmänna principer för hjärnans funktion, och beskriver känslan av närvaro som en generell kognitiv funktion, inte specifikt relaterad till virtuella verkligheter. Virtuell verklighet (virtual reality, VR) är en utmärkt teknik för att undersöka och dra nytta av alla aspekter av närvaro, men en mer allmän tolkning gör att samma principer kan tillämpas på ett brett spektrum av applikationer. Funktionell hjärnavbildning (fMRI) användes för att studera den arbetande mänskliga hjärnan i VR. Sådant data kan informera och begränsa en vidare diskussion av närvaro. Med hjälp av två olika försöksdesigner har vi har undersökt både effekten av grundläggande aspekter av VR-interaktion, och neurala korrelat av störd närvaro i en naturalistisk miljö. Verklighets-baserad hjärna-dator interaktion (reality-based brain-computer interaction, RBBCI) föreslås som ett begrepp för att sammanfatta motiv och kontext för applikationer som bygger på en förståelse av den mänskliga hjärnan i virtuella verkligheter. Den prototypapplikation vi utvecklade uppnådde inte de uppsatta målen, men mycket återstår att utforska och lärdomar från vår utvärdering pekar på möjliga vägar framåt. En vidare användning av metoder och tekniker från dataspel är speciellt intressant.
2

Reality-based brain-computer interaction

Sjölie, Daniel January 2011 (has links)
Recent developments within human-computer interaction (HCI) and cognitive neuroscience have come together to motivate and enable a framework for HCI with a solid basis in brain function and human reality. Human cognition is increasingly considered to be critically related to the development of human capabilities in the everyday environment (reality). At the same time, increasingly powerful computers continuously make the development of complex applications with realistic interaction easier. Advances in cognitive neuroscience and brain-computer interfaces (BCIs) make it possible to use an understanding of how the brain works in realistic environments to interpret brain measurements and adapt interaction in computer-generated virtual environments (VEs). Adaptive and realistic computer applications have great potential for training, rehabilitation and diagnosis. Realistic interaction environments are important to facilitate transfer to everyday reality and to gain ecological validity. The ability to adapt the interaction is very valuable as any training or learning must be done at the right level in order to optimize the development of skills. The use of brain measurements as input to computer applications makes it possible to get direct information about how the brain reacts to aspects of a VE. This provides a basis for the development of realistic and adaptive computer applications that target cognitive skills and abilities. Theories of cognition and brain function provide a basis for how such cognitive skills develop, through internalization of interaction with the current environment. By considering how internalization leads to the neural implementation and continuous adaptation of mental simulations in the brain it is possible to relate designed phenomena in a VE to brain measurements. The work presented in this thesis contributes to a foundation for the development of reality-based brain-computer interaction (RBBCI) applications by combining VR with emerging BCI methods based on an understanding of the human brain in human reality. RBBCI applications can be designed and developed to interact directly with the brain by interpreting brain measurements as responses to deliberate manipulations of a computer-generated reality. As the application adapts to these responses an interaction loop is created that excludes the conscious user. The computer interacts with the brain, through (the virtual) reality. / Den senaste tidens utveckling inom människa-dator-interaktion (MDI) och kognitiv neurovetenskap har samverkat till att motivera och möjliggöra ett ramverk för MDI med en stabil grund i hjärnfunktion och människors verklighet. Mänsklig kognition anses till allt högre grad vara kritisk beroende av hur människors förmågor utvecklas i den vardagliga miljön (verkligheten). Samtidigt har ständigt kraftfullare datorer gjort det allt lättare att utveckla komplexa applikationer med realistisk interaktion. Framsteg inom kognitiv neurovetenskap och hjärna-dator-gränssnitt (brain-computer interface, BCI) gör det möjligt att dra nytta av en förståelse av hur hjärnan fungerar i realistiska miljöer för att tolka hjärnmätningar och anpassa interaktion i datorgenererade virtuella miljöer (virtual environment, VE). Adaptiva och realistiska datorapplikationer har stor potential för träning, rehabilitering och diagnostik. Realistiska interaktionsmiljöer är viktiga för att underlätta överföring (transfer) till vardagen och för att nå ekologisk validitet. Möjligheten att anpassa interaktion är mycket värdefull eftersom träning och lärande måste ske på rätt nivå för att optimera effekten. Genom att använda sig av hjärnmätningar som indata till datorprogram blir det möjligt att få direkt information om hur hjärnan reagerar på olika aspekter av en VE. Detta ger en grund för utveckling av realistiska och adaptiva datorprogram som riktar in sig på kognitiva färdigheter och förmågor. Teorier om kognition och hjärnan ger en bas för att förstå hur sådana kognitiva färdigheter utvecklas genom att interaktion med omgivningen internaliseras. Genom att ta hänsyn till hur internalisering leder till ständig utveckling av mentala simuleringar i hjärnan är det möjligt att relatera designade fenomen i en VE till hjärnmätningar. Det arbete som presenteras i denna avhandling lägger en grund för utveckling av verklighets-baserad hjärna-dator-interaktions (reality-based brain-computer interaction, RBBCI) applikationer genom att kombinera VR med nya BCI metoder, baserat på en förståelse av den mänskliga hjärnan i människans verklighet. RBBCI-program kan designas och utvecklas för att interagera direkt med hjärnan genom att tolka hjärnmätningar som respons på avsiktliga manipulationer av den datorgenererade verkligheten. När programmet anpassar sig till denna respons uppstår en interaktionsloop som exkluderar den medvetna användaren. Datorn interagerar med hjärnan, genom (den virtuella) verkligheten.

Page generated in 0.1157 seconds