1 |
Two Techniques in the Area of the Star ProblemKirsten, Daniel, Marcinkowski, Jerzy 30 November 2012 (has links) (PDF)
This paper deals with decision problems related to the star problem in trace monoids, which means to determine whether the iteration of a recognizable trace language is recognizable. Due to a theorem by G. Richomme from 1994 [32, 33], we know that the star problem is decidable in trace monoids which do not contain a submonoid of the form {a,c}* x {b,d}*.
Here, we consider a more general problem: Is it decidable whether for some recognizable trace language and some recognizable or finite trace language P the intersection R ∩ P* is recognizable? If P is recognizable, then we show that this problem is decidale iff the underlying trace monoid does not contain a submonoid of the form {a,c}* x b*. In the case of finite languages P, we show several decidability and undecidability results.
|
2 |
Two Techniques in the Area of the Star ProblemKirsten, Daniel, Marcinkowski, Jerzy 30 November 2012 (has links)
This paper deals with decision problems related to the star problem in trace monoids, which means to determine whether the iteration of a recognizable trace language is recognizable. Due to a theorem by G. Richomme from 1994 [32, 33], we know that the star problem is decidable in trace monoids which do not contain a submonoid of the form {a,c}* x {b,d}*.
Here, we consider a more general problem: Is it decidable whether for some recognizable trace language and some recognizable or finite trace language P the intersection R ∩ P* is recognizable? If P is recognizable, then we show that this problem is decidale iff the underlying trace monoid does not contain a submonoid of the form {a,c}* x b*. In the case of finite languages P, we show several decidability and undecidability results.
|
Page generated in 0.0658 seconds