• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 11
  • 1
  • 1
  • Tagged with
  • 16
  • 6
  • 6
  • 5
  • 5
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Single molecule study of RecA recombinase enzyme activity

Mah, Wayne. January 1900 (has links)
Thesis (M.Sc.). / Written for the Dept. of Chemistry. Title from title page of PDF (viewed 2008/05/14). Includes bibliographical references.
2

Mechanistic and Genetic Biases in Human Immunoglobulin Heavy Chain Development

Volpe, Joseph M. January 2008 (has links)
Thesis (Ph. D.)--Duke University, 2008. / Includes bibliographical references.
3

The effects of RAG-1 SNPs on the coding joint formation and antigen receptor diversity /

Yim, D. Seongjoon. January 2008 (has links)
Thesis (M.Sc.)--York University, 2008. Graduate Programme in Biology. / Typescript. Includes bibliographical references (leaves 113-121). Also available on the Internet. MODE OF ACCESS via web browser by entering the following URL: http://gateway.proquest.com/openurl?url_ver=Z39.88-2004&res_dat=xri:pqdiss&rft_val_fmt=info:ofi/fmt:kev:mtx:dissertation&rft_dat=xri:pqdiss:MR51616
4

Mechanism of homologous recombination : from crystal structures of RecA-single stranded DNA and RecA-double stranded DNA filaments /

Chen, Zhucheng. January 2009 (has links)
Thesis (Ph. D.)--Cornell University, January, 2009. / Vita. Includes bibliographical references (leaves 121-134).
5

Studies in bacterial genome engineering and its applications

Enyeart, Peter James 12 August 2015 (has links)
Many different approaches exist for engineering bacterial genomes. The most common current methods include transposons for random mutagenesis, recombineering for specific modifications in Escherichia coli, and targetrons for targeted knock-outs. Site-specific recombinases, which can catalyze a variety of large modifications at high efficiency, have been relatively underutilized in bacteria. Employing these technologies in combination could significantly expand and empower the toolkit available for modifying bacteria. Targetrons can be adapted to carry functional genetic elements to defined genomic loci. For instance, we re-engineered targetrons to deliver lox sites, the recognition target of the site-specific recombinase, Cre. We used this system on the E. coli genome to delete over 100 kilobases, invert over 1 megabase, insert a 12-kilobase polyketide-synthase operon, and translocate a 100 kilobase section to another site over 1 megabase away. We further used it to delete a 15-kilobase pathogenicity island from Staphylococcus aureus, catalyze an inversion of over 1 megabase in Bacillus subtilis, and simultaneously deliver nine lox sites to the genome of Shewanella oneidensis. This represents a powerful, versatile, and broad-host-range solution for bacterial genome engineering. We also placed lox sites on mariner transposons, which we leveraged to create libraries of millions of strains harboring rearranged genomes. The resulting data represents the most thorough search of the space of potential genomic rearrangements to date. While simple insertions were often most adaptive, the most successful modification found was an inversion that significantly improved fitness in minimal media. This approach could be pushed further to examine swapping or cutting and pasting regions of the genome, as well. As potential applications, we present work towards implementing and optimizing extracellular electron transfer in E. coli, as well as mathematical models of bacteria engineered to adhere to the principles of the economic concept of comparative advantage, which indicate that the approach is feasible, and furthermore indicate that economic cooperation is favored under more adverse conditions. Extracellular electron transfer has applications in bioenergy and biomechanical interfaces, while synthetic microbial economics has applications in designing consortia-based industrial bioprocesses. The genomic engineering methods presented above could be used to implement and optimize these systems. / text
6

Etude de l'expression de recombinases néogéniques dans le cancer colorectal / Study the expression of neogenic recombinases in colorectal cancer

Arnaoty, Ahmed 12 June 2013 (has links)
Le phénomène dit de domestication moléculaire qui a été rapporté pour certains transposons à ADN a abouti à la formation de néogènes qui codent des protéines potentiellement impliquées dans la stabilité du génome de part une activité recombinase. L’objectif de ce travail est d’étudier l’expression de 23 recombinases néogéniques d’intérêt dérivées de transpsons à ADN dans une série de cancers colorectaux. Nous avons fabriqué de nouveaux anticorps performants pour l’étude en western blot et en immunofluorescence de l’expression du gène SETMAR qui code pour la protéine Metnase dans des lignées cancéreuse différentes et dans des tissus du côlon tumoraux et normaux. Nos résultats démontrent que la vaccination d’ADN avec la formulation utilisée est une méthode qui donne de meilleurs résultats que l'injection de peptide ou protéines purifiées. Nous avons observé une expression de la protéine metnase dans des lignées cancéreuses de cancer du côlon, de leucémie et de cancer du sein. Le niveau d’expression de cette protéine Metnase dans le cancer du côlon semble être associé au statut MSI ce qui suggère un rôle de cette protéine dans les mécanismes de carcinogenèse et de progression tumorale. / During a phenomena known as molecular domestication has been reported for some DNA transposons leading to the formation of Neogenes which encode proteins potentially involved in the genome stability. The objective of this work is to study the expression of 23 neogenic recombinases of interest derived from DNA transpsons in a series of frozen colorectal cancers. We have manufactured new effective antibodies for the study of the expression of SETMAR gene which encode Metnase protein in different cancer cell lines and tissues of colon tumoral and normal by the method of Western blot and immunofluorescence. Our results demonstrate that DNA vaccination with the formulation used here is a method that gives better results than the injection of peptide or purified proteins. We observed an expression of Metnase protein in cell lines of colorectal cancer, leukemia and breast cancer. The level of expression of the Metnase protein in colon cancer appears to be associated to the MSI status which suggests a role for this protein in the mechanisms of carcinogenesis and tumor progression.
7

Homologous Recombinational DNA Repair: from Prokaryotes to Eukaryotes: a Dissertation

Forget, Anthony L. 17 April 2004 (has links)
The error free repair of DNA double strand breaks through the homologous recombinational repair pathway is essential for organisms of all types to sustain life. A detailed structural and mechanistic understanding of this pathway has been the target of intense study since the identification of bacterial recA, the gene whose product is responsible for the catalysis of DNA strand exchange, in 1965. The work presented here began with defining residues that are important for the assembly and stability of the RecA filament, and progressed to the identification of residues critical for the transfer of ATP-mediated allosteric information between subunits in the protein's helical filament structure. My work then evolved to investigate similar mechanistic details concerning the role of ATP in the human RecA homolog, Rad51. Results from non-conservative mutagenesis studies of the N-terminal region of one subunit and the corresponding interacting surface on the neighboring subunit within the RecA protein, led to the identification of residues critical for the formation of the inactive RecA filament but not the active nucleoprotein filament. Through the use of specifically engineered cysteine substitutions we observed an ATP-induced change in the efficiency of cross subunit disulfide bond formation and concluded that the position of residues in this region as defined by the current crystal structure may not accurately reflect the active form of the protein. These ATP induced changes in positioning led to the further investigation of the allosteric mechanism resulting in the identification of residue Phe217 as the key mediator for ATP-induced information transfer from one subunit to the next. In transitioning to investigate homologous mechanisms in the human pathway I designed a system whereby we can now analyze mutant human proteins in human cells. This was accomplished through the use of RNA interference, fluorescent transgenes, confocal microscopy and measurements of DNA repair. In the process of establishing the system, I made the first reported observation of the cellular localization of one of the Rad51 paralogs, Xrcc3, before and after DNA damage. In addition we found that a damage induced reorganization of the protein does not require the presence of Rad51 and the localization to DNA breaks occurs within 10 minutes. In efforts to characterize the role of ATP in human Rad51 mediated homologous repair of double strand breaks we analyzed two mutations in Rad51 specifically affecting ATP hydrolysis, K133A and K133R. Data presented here suggests that, in the case of human cells, ATP hydrolysis and therefore binding, by Rad51 is essential for successful repair of induced damage.
8

Co-operative recombination mechanisms promoting gene clustering and lateral transfer of antibacterial drug resistance

Kamali-Moghaddam, Masood January 2001 (has links)
<p>Transposons of the Mu superfamily are widespread and have been shown to play an important role in the dissemination of antibiotic resistance among microorganisms. One of these elements, Tn<i>5090</i>/Tn<i>402</i> is the basal vehicle of the type 1 integrons in which mobile resistance gene cassettes are inserted to form clusters and operons. The transposon was shown to preferentially target recombination sites of the serine family of recombinases that occur in many plasmids and transposons. Mutation analysis revealed that DNA-binding of the targeting factor, a serine recombinase, is essential for efficient transposition, while the recombination activity is not required. Truncated elements were frequently observed and in one instance borne on a composite transposon flanked by IS<i>6100</i>. This new transposon, Tn<i>5089</i>, has allowed the translocation of the integron to small mobilizable IncQ-plasmids that lack the targeting factor and thus are incompetent for insertion of Tn<i>5090</i>/Tn<i>402</i>. Another small replicon, by contrast targeting-positive, was completely sequenced.</p><p>The transposon Tn<i>5090</i>/Tn<i>402 </i>carries arrayed transposase-binding sites at the ends, which are supposed to arrange the transposase TniA in the appropriate geometry in a recombinationally active complex with DNA. Footprinting showed that transposase, TniA, binds to four 19 bp repeats on one end and to two 19 bp repeats on the other end.</p><p>Site-specific resolution of Tn<i>5090</i>/Tn<i>402</i> co-integrates<i> </i>was analysed in an <i>in vitro </i>system. The<i> res</i> site was found to be composed of three unusually organized subsites and expression of TniC was shown to be autoregulated by TniC acting as repressor due to an overlap of the <i>res</i> site with the promoter. </p><p>The data presented show several aspects of cooperation between transposition and site-specific recombination. This cooperation has enriched genes and combinations of genes that mediate resistance to antibiotic drugs and promotes lateral transfer of these genes. The organization of sites and subsites in the DNA is a subtle genetic code for the formation of the molecule complexes controlling these genetic events. </p>
9

Co-operative recombination mechanisms promoting gene clustering and lateral transfer of antibacterial drug resistance

Kamali-Moghaddam, Masood January 2001 (has links)
Transposons of the Mu superfamily are widespread and have been shown to play an important role in the dissemination of antibiotic resistance among microorganisms. One of these elements, Tn5090/Tn402 is the basal vehicle of the type 1 integrons in which mobile resistance gene cassettes are inserted to form clusters and operons. The transposon was shown to preferentially target recombination sites of the serine family of recombinases that occur in many plasmids and transposons. Mutation analysis revealed that DNA-binding of the targeting factor, a serine recombinase, is essential for efficient transposition, while the recombination activity is not required. Truncated elements were frequently observed and in one instance borne on a composite transposon flanked by IS6100. This new transposon, Tn5089, has allowed the translocation of the integron to small mobilizable IncQ-plasmids that lack the targeting factor and thus are incompetent for insertion of Tn5090/Tn402. Another small replicon, by contrast targeting-positive, was completely sequenced. The transposon Tn5090/Tn402 carries arrayed transposase-binding sites at the ends, which are supposed to arrange the transposase TniA in the appropriate geometry in a recombinationally active complex with DNA. Footprinting showed that transposase, TniA, binds to four 19 bp repeats on one end and to two 19 bp repeats on the other end. Site-specific resolution of Tn5090/Tn402 co-integrates was analysed in an in vitro system. The res site was found to be composed of three unusually organized subsites and expression of TniC was shown to be autoregulated by TniC acting as repressor due to an overlap of the res site with the promoter. The data presented show several aspects of cooperation between transposition and site-specific recombination. This cooperation has enriched genes and combinations of genes that mediate resistance to antibiotic drugs and promotes lateral transfer of these genes. The organization of sites and subsites in the DNA is a subtle genetic code for the formation of the molecule complexes controlling these genetic events.
10

Development of CRISPR-RNA Guided Recombinases for Genome Engineering

January 2018 (has links)
abstract: Recombinases are powerful tools for genome engineering and synthetic biology, however recombinases are limited by a lack of user-programmability and often require complex directed-evolution experiments to retarget specificity. Conversely, CRISPR systems have extreme versatility yet can induce off-target mutations and karyotypic destabilization. To address these constraints we developed an RNA-guided recombinase protein by fusing a hyperactive mutant resolvase from transposon TN3 to catalytically inactive Cas9. We validated recombinase-Cas9 (rCas9) function in model eukaryote Saccharomyces cerevisiae using a chromosomally integrated fluorescent reporter. Moreover, we demonstrated cooperative targeting by CRISPR RNAs at spacings of 22 or 40bps is necessary for directing recombination. Using PCR and Sanger sequencing, we confirmed rCas9 targets DNA recombination. With further development we envision rCas9 becoming useful in the development of RNA-programmed genetic circuitry as well as high-specificity genome engineering. / Dissertation/Thesis / Masters Thesis Biology 2018

Page generated in 0.0725 seconds