1 |
Reconnaissance d'activités et connaissances incertaines dans les scènes vidéos appliquées à la surveillance de personnes âgées.Romdhane, Rim 30 September 2013 (has links) (PDF)
Cette thèse aborde le problème de la reconnaissance d'activités. Elle est fortement motivée par la recherche dans le domaine de la reconnaissance des activités vidéo appliquée au domaine de la surveillance de personnes âgées. Dans ce travail, nous proposons deux contributions principales. La première contribution consiste en une approche pour la reconnaissance d'activité vidéo avec gestion de l'incertitude pour une détection précise d'événements. La deuxième contribution consiste à définir une ontologie et une base de connaissances pour la surveillance dans le domaine de la santé et en particulier la surveillance à l'hôpital de patients atteints de la maladie d'Alzheimer. L'approche de reconnaissance d'activité proposée combine une modélisation sémantique avec un raisonnement probabiliste pour faire face aux erreurs des détecteurs de bas niveau et pour gérer l'incertitude de la reconnaissance d'activité. La reconnaissance probabiliste des activités est basée sur la théorie des probabilités bayésienne qui fournit un cadre cohérent pour traiter les connaissances incertaines. L'approche proposée pour la vérification probabiliste des contraintes spatiale et temporelle des activités est basée sur le modèle de probabilité gaussienne. Nous avons travaillé en étroite collaboration avec les cliniciens pour définir une ontologie et une base de connaissances pour la surveillance à l'hôpital de patients atteints de la maladie d'Alzheimer. L'ontologie définie contient plusieurs concepts utiles dans le domaine de la santé. Nous avons également défini un certain nombre de critères qui peuvent être observés par les caméras pour permettre la détection des premiers symptômes de la maladie d'Alzheimer. Nous avons validé l'algorithme proposé sur des vidéos réelles. Les résultats expérimentaux montrent que l'algorithme de reconnaissance d'activité proposé a réussi à reconnaitre les activités avec un taux élevé de reconnaissance. Les résultats obtenus pour la surveillance de patients atteints de la maladie d'Alzheimer mettent en évidence les avantages de l'utilisation de l'approche proposée comme une plate-forme de soutien pour les cliniciens pour mesurer objectivement les performances des patients et obtenir une évaluation quantifiable des activités de la vie quotidienne.
|
Page generated in 0.1127 seconds