• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • Tagged with
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Design, development and implementation of a parallel algorithm for computed tomography using algebraic reconstruction technique

Melvin, Cameron 05 October 2007 (has links)
This project implements a parallel algorithm for Computed Tomography based on the Algebraic Reconstruction Technique (ART) algorithm. This technique for reconstructing pictures from projections is useful for applications such as Computed Tomography (CT or CAT). The algorithm requires fewer views, and hence less radiation, to produce an image of comparable or better quality. However, the approach is not widely used because of its computationally intensive nature in comparison with rival technologies. A faster ART algorithm could reduce the amount of radiation needed for CT imaging by producing a better image with fewer projections. A reconstruction from projections version of the ART algorithm for two dimensions was implemented in parallel using the Message Passing Interface (MPI) and OpenMP extensions for C. The message passing implementation did not result in faster reconstructions due to prohibitively long and variant communication latency. The shared memory implementation produced positive results, showing a clear computational advantage for multiple processors and measured efficiency ranging from 60-95%. Consistent with the literature, image quality proved to be significantly better compared to the industry standard Filtered Backprojection algorithm especially when reconstructing from fewer projection angles. / October 2006
2

Design, development and implementation of a parallel algorithm for computed tomography using algebraic reconstruction technique

Melvin, Cameron 05 October 2007 (has links)
This project implements a parallel algorithm for Computed Tomography based on the Algebraic Reconstruction Technique (ART) algorithm. This technique for reconstructing pictures from projections is useful for applications such as Computed Tomography (CT or CAT). The algorithm requires fewer views, and hence less radiation, to produce an image of comparable or better quality. However, the approach is not widely used because of its computationally intensive nature in comparison with rival technologies. A faster ART algorithm could reduce the amount of radiation needed for CT imaging by producing a better image with fewer projections. A reconstruction from projections version of the ART algorithm for two dimensions was implemented in parallel using the Message Passing Interface (MPI) and OpenMP extensions for C. The message passing implementation did not result in faster reconstructions due to prohibitively long and variant communication latency. The shared memory implementation produced positive results, showing a clear computational advantage for multiple processors and measured efficiency ranging from 60-95%. Consistent with the literature, image quality proved to be significantly better compared to the industry standard Filtered Backprojection algorithm especially when reconstructing from fewer projection angles.
3

Design, development and implementation of a parallel algorithm for computed tomography using algebraic reconstruction technique

Melvin, Cameron 05 October 2007 (has links)
This project implements a parallel algorithm for Computed Tomography based on the Algebraic Reconstruction Technique (ART) algorithm. This technique for reconstructing pictures from projections is useful for applications such as Computed Tomography (CT or CAT). The algorithm requires fewer views, and hence less radiation, to produce an image of comparable or better quality. However, the approach is not widely used because of its computationally intensive nature in comparison with rival technologies. A faster ART algorithm could reduce the amount of radiation needed for CT imaging by producing a better image with fewer projections. A reconstruction from projections version of the ART algorithm for two dimensions was implemented in parallel using the Message Passing Interface (MPI) and OpenMP extensions for C. The message passing implementation did not result in faster reconstructions due to prohibitively long and variant communication latency. The shared memory implementation produced positive results, showing a clear computational advantage for multiple processors and measured efficiency ranging from 60-95%. Consistent with the literature, image quality proved to be significantly better compared to the industry standard Filtered Backprojection algorithm especially when reconstructing from fewer projection angles.

Page generated in 0.4957 seconds