• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • No language data
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

The Grass Seed Pathogen Pyrenophora semeniperda as a Biocontrol Agent for Annual Brome Grasses

Stewart, Thomas E. 05 July 2009 (has links)
Bromus tectorum and other annual brome grasses have invaded many ecosystems of the western United States, and because of an annual-grass influenced alteration of the natural fire cycle on arid western range lands near monocultures are created and conditions in which the native vegetation cannot compete are established. Each year thousands of hectares become near monocultures of annual brome grasses. Pyrenophora semeniperda, a generalist seed pathogen of annual grasses, shows major potential as a possible mycoherbicide that could help in reducing the monocultures created by annual grasses. The purpose of this research was to identify the requirements for isolating cultures of P. semeniperda, search for a hypervirulent strain, and evaluate its effect in the field. The techniques for isolating the fungus have evolved and become more efficient. The first two years of working with P. semeniperda resulted in 11 isolates. During the third year of this study, we developed a single spore isolation technique that resulted in 480 additional isolates. Virulence screening resulted in detection of a range of isolate ability to kill non-dormant B. tectorum seeds. Ninety-two isolates represented a range of virulence from 0-44%. The variation in virulence was expressed mostly within populations rather than between populations. Similarly, virulence varied significantly within Internal Transcribed Spacer (ITS) genotypes and habitats but not between them. When conidial inoculum was applied in the field there was no observed difference in disease incidence between different levels of inoculum. This is thought to have been due to applying the inoculum under conditions in which most in situ seeds were infected and killed by already high field inoculum loads. While additional field trials are needed to optimize the inoculum effectiveness, the overall results of this research provide a good foundation for using P. semeniperda as a biological control for seed banks of annual brome grasses.

Page generated in 0.0584 seconds